Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11145
標題: 探討不同電解液對電化學法剝除氮化鉻薄膜之影響研究
Stripping of CrN thin films by electrochemical methods with different electrolytes
作者: 賴玉鈴
Lai, Yu-Ling
關鍵字: electrochemical methods
電化學法
neutral electrolytes
stripping
cathodic arc plasma
chromium nitride
中性電解液
剝除
陰極電弧電漿
氮化鉻
出版社: 材料工程學系所
引用: 1. R.R. Aharonov, B.F. Coll, and R.P. Fontana, “Properties of chromium nitride coatings deposited by cathodic arc evaporation,” Surf. Coat. Technol., 61 (1993) 223. 2. O. Knotek, F. Löffler, and H.-J. Scholl, “Properties of arc-evaporated CrN and (Cr,Al)N coatings,” Surf. Coat. Technol., 45 (1991) 52. 3. P. Engel, G. Schwarz, and G.K. Wolf, “Characterisation of chromium nitride films preoared by ion-beam-assisted deposition,” Surf. Coat. Technol., 112 (1999) 286. 4. L. Cunha, M. Andritschky, K. Pischow, and Z. Wang, “Microstructure of CrN coatings produced by PVD techniques,” Thin Solid Films, 355-356 (1999) 465. 5. H.-G. Mary, Encyclopedia of Chemical Technology, 4th ed., New York, Wiley, 17 (1996) 108. 6. R. Rebole, A. Martinez, R. rodriguez, G.G. Fuentes, E. Spain, N. Watson, J.C. Avelar-Batista, J. Housden, F. Montala, L.J. Carreras, and T.J. Tate, “Microstructural and tribological invertigations of CrN coated, wet-stripped and recoated functional substrates used for cutting and forming tools,” Thin Solid Films, 469-470 (2004) 466. 7. F. Hollstein, R. Wiedemann, and J. Scholz, “Characteristics of PVD-coatings on AZ31hp magnesium alloys,” Surf. Coat. Technol., 162 (2003) 261. 8. J.C. Avelar-Batista, E. Spain, J. Housden, G.G. Fuentes, R. Rodriguez, F. Montala, L.J. Carreras, and T.J. Tate, “Effect of coating thickness and deposition methods on the stripping rate of Cr-N coatings,” Surf. Coat. Technol., 200 (2005) 1842. 9. Y. Sen, M. Ürgen, K. Kazmanli, and A.F. Cakir, “Stripping of CrN from CrN-coated high-speed steels,” Surf. Coat. Technol., 113 (1999) 31. 10. A.B. Cristóbal, A. Conde, J. Housden, T.J. Tate, R. Rodriguez, F. Montala, J. de Damborenea, “Electrochemical stripping of hard ceramic chromium nitride coatings,” Thin Solid Films, 484 (2005) 238. 11. 張政誌,“以電化學法剝除鉻及氮化鉻薄膜之研究”,中興大學材料工程學系碩士論文,2005年8月。 12. 劉明煌,“氮化鉻製程參數對於微結構及磨潤行為之影響”,成功大學機械工程學系碩士論文,1993年6月。 13. D.-Y. Wang and K.-W. Weng, “Deposition of CrN coatings by current-modulating cathodic arc evaporation”, Surf. Coat. Technol., 137 (2001) 31. 14. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, Materials Park, Ohio, ASM International, 2nd ed., (1990) 1293. 15. M. Ürgen and A.F. Çakır, “The effect of heating on corrosion behavior of TiN- and CrN- coated steels,” Surf. Coat. Technol., 96 (1997) 236. 16. H. Schulz and E. Bergmann, “Properties and applications of ion-plated coatings in the system Cr-C-N,” Surf. Coat. Technol., 50 (1991) 53. 17. I. Milosev, H.H. Strhblow, and B.Navinsek, “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings,” Surf. Coat. Technol., 74/75 (1995) 897. 18. H. Ichimura and A. Kawana, “High temperature oxidation of ion-plated CrN films,” J. Mater. Res., 9 (1994) 151. 19. J. Vetter, R. Knaup, H. Dwuletzki, E. Schneider, and S. Vogler, “Hard coatings for lubrication reduction in metal forming,” Surf. Coat. Technol., 86-87 (1996) 739. 20. B. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures,” Surf. Coat. Technol., 97 (1997) 182. 21. 柯賢文編著,腐蝕及其防制,全華科技圖書股份有限公司,民國八十四年。 22. 田福助,電化學-基本原理與應用,五洲出版社,民國八十三年。 23. W. Zahn, A. Zosch, H.-D. Schnabel, “STS investigations to describe corrosion procedures on thin CrN layers,” Anal. Bioanal. Chem., 375 (2003) 864. 24. F. D. Lai, and J. K. Wu, “High temperature and corrosion properties of cathdic-arc-plasma deposited CrN coatings,” Surf. Coat. Technol., 64 (1994) 53. 25. S.C. Lee, W.-Y. Ho, and F.D. Lai, “Effect of substrate surface roughness on the characteristics of CrN hard film,” Mater. Chem. Phys., 43 (1996) 266. 26. J. Stockemer, R. Winand, and P. Vanden Brande, “Comparison of wear and corrosion behaviors of Cr and CrN sputtered coatings,” Surf. Coat. Technol., 115 (1999) 230. 27. G. Bertrand, H. Mahdjoub, and C. Meunier, “A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings,” Surf. Coat. Technol., 126 (2000) 199. 28. K.L. Chang, S.C. Chung, S.H. Lai, and H.C. Shih, “The electrochemical behavior of thermally oxidized CrN coatings deposited on steel by cathodic arc plasma deposition,” Appl. Surf. Sci., 236 (2004) 406. 29. I. Milošev, H.-H. Strehblow, and B. Navinšek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation,” Thin Solid Films, 303 (1997) 246. 30. C.S. Barrett and T.B. Massalski, Structure of Metals, New York, Oxford, Pergamon, (1980) 205. 31. 汪俊翰,“物理氣相沈積具優選方向之氮化鉻硬質薄膜之性質研究”,中興大學碩士論文,1999。 32. 林彥鈞,“陰極電弧沈積Cr(N,O)/CrN 複合鍍膜之氧化與腐蝕行為研究”,私立大同大學碩士論文,2004。 33. A.J. Bard and L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, New York, John Wiley & Sons, (1980) 107, 173. 34. P. Akhter, A. Baig, and A. Mufti, “Dissolution of Si(100) layers in NaOH aqueous solutions,” J. Phys. D. Appl. Phys., 22 (1989) 1924. 35. E.J. Connolly, P.J. French, X.H. Xia, and J.J. Kelly, “Galvanic etch stop for Si in KOH,” J. Micromech. Microeng., 14 (2004) 1215. 36. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, Houston, Tex., National Association of Corrosion Engineers, (1974) 256. 37. M.H. Shiao, Z.C. Chang, and F.S. Shieu, “Characterization and Formation Mechanism of Macroparticles in Arc Ion-Plated CrN Thin Films,” J. Electrochem. Soc., 150 (5) (2003) C320.
摘要: 本研究主要是在鹼性、酸性及中性電解液下,以電化學法剝除陰極電弧電漿沉積於矽晶片上之氮化鉻膜(CrN/Si),輔以剝除沉積於304不銹鋼上之氮化鉻膜(CrN/SUS304)。於不同濃度之鹼性(KOH)、酸性(H2SO4)及中性(Na2SO4)電解液中,以定電流模式觀察薄膜完全剝除之最短時間,並探討電解液與其濃度對剝除速率及剝除結果之影響。此外,亦以數學模式描述剝除膜厚與電解液濃度及時間之關係。結果顯示CrN薄膜於KOH、H2SO4及Na2SO4 電解液中,皆能完全剝除,而文獻中尚未有於中性溶液中剝除鍍膜之相關研究,此法更可兼顧目前環保及安全性的考量,極具有工業應用價值。 由於Si較CrN電阻高許多,所以CrN/Si剝除過程電位變化明顯,可由電位對時間關係圖求得薄膜完全剝除之最短時間tc,而藉由監測電位之變化可以加以控制剝除時間,當電位開始上升時便停止電源供應,可以將CrN/Si完全剝除且不腐蝕矽基材。剝除過程CrN薄膜厚度均隨剝除時間增加而減少,二者之關係可以L/L0 = 1-(t/tc)n 及L-L0 = -kt 之數學模式描述,所得n值及k值可分別表示剝除行為及剝除速率,所得n值約在0.6~1.3之間,顯示薄膜在不同溶液下可能有類似之剝除行為;k 值則在強鹼下(1M KOH)最小,即剝除速率最慢。在剝除CrN/SUS304方面,亦是藉由CrN及SUS304與溶液反應之電位之變化來得知完全剝除時間,但因SUS304與CrN均為導電性物質且電阻率相近,所以只有在某些溶液下變化較明顯而容易判斷。剝除結果,SUS304不繡鋼基材表面都會有雜質殘留,可能需要較長之時間才能剝除乾淨,且表面皆會不同程度的腐蝕現象,這可能是由於SUS304為含有Cr金屬之成份,在電化學剝除過程中亦會被腐蝕,而其中在強鹼(1M KOH)下表面腐蝕較為輕微,此可能因為生成鈍化膜所致。此外,本研究以相同之方法及電解液對非磁控濺射沉積於矽晶片上之氮化鉻膜進行剝除,結果顯示亦能將其CrN膜完全剝除。
This research mainly employs electrochemical methods under alkaline, acid, and neutral electrolytes to strip the chromium nitride thin films that were deposited by cathodic arc plasma technique on Si wafer (CrN/Si). Moreover, the CrN coated on 304 stainless steel substrate (CrN/SUS304) also strpped on same conditions for comparison. The galvanostatic method is applied to observe the shortest completely stripping time and investigate the influences of stripping rate and stripping results in different concentration of KOH, H2SO4, and Na2SO4 solutions. In addition, a mathematical expression is also utilized to analyze the relationship between film thickness, electrolyte concentration, and stripping time. The results indicate that CrN films can be completely stripped in KOH, H2SO4, and Na2SO4 solutions. It has never used neutral solution to strip the coated films in correlated reports. It is not only satisfied the protection of environment but also the operation safety, hence, should possess good industrial potential. The shortest completely stripping time (tc) could be obtained from the relation of responded potential and stripping time. Because of the resistivity of Si is much higher then CrN. It makes the potential to change obviously during stripping CrN/Si process. We can easily control the stripping completely without attacking Si wafer by stop the power source when the potential start rising. The thickness of CrN films decreases as stripping time increases in all stripping process. The relation between these two factors could be described as L/L0 = 1-(t/tc)n and L-L0=-kt. The n and k value can be regarded as stripping mechanism and the stripping rate, respectively. It obtained n value approximate 0.6~1.3 that may indicate the CrN films has a similar stripping mechanism in deferent solutions. Moreover, the smallest k value that represents the stripping rate of CrN films is the slowest is observed in strong alkaline solution (1M KOH). On the other hand, during stripping the CrN/SUS304, it also obtained the shortest completely stripping time from the change of potential. Because of SUS304 and CrN are both conductors with similar resistivity. It makes that the potential changes obviously just in some solution. After the stripping process done, it still has a little residue stick on the surface of SUS304 substrate. It may need longer time to strip completely. And the surface of SUS304 has different extent of corrosion. It may be the SUS304 is a metal with Cr (18%) that is easily attack. Of the total, it has little corrosion in 1M KOH solution, it may be because that produces a passive film on surface. Additionally, this method can also completely strip the CrN thin films that were deposited by unbalance magnetron sputtering on Si wafer.
URI: http://hdl.handle.net/11455/11145
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.