請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/11147
標題: 以圖案化藍寶石基板成長氮化鎵系列發光二極體之研究
Fabrication and Characterization of GaN-Based Light-Emitting Diodes Grown on Patterned Sapphire Substrates
作者: 王偉凱
Wang, Wei-Kai
關鍵字: Nitride
氮化鎵
Patterned Sapphire Substrate
Light Emitting Diode
圖案化藍寶石基板
發光二極體
出版社: 材料工程學系所
引用: References [1] S. Nakamura, and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, Springer, Berlin, 1997. [2] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting, John Wiley & Sons, New York, 2002. [3] E. F. Schubert, Light-Emitting Diode, Cambridge University Press, New York, 2003. [4] R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett., vol. 88, 101104, 2006. [5] Y. D. Huh, J. H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three band light emitting diodes,” J. Electrochem. Soc., vol. 150, pp. H57-H61, 2003. [6] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett., vol. 86, 221101, 2005. [7] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett., vol. 84, pp. 2253-2255, 2004. [8] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN quantum well interconnected microdisk light emitting diodes,” Appl. Phys. Lett., vol. 77, pp. 3236-3238, 2000. [9] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, and R. W. Martin, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes,” J. Appl. Phys., vol. 93, pp. 5978-5982, 2003. [10] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, “AlGaN/GaN quantum well ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 73, pp. 1688-1690, 1998. [11] H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes,” J. Appl. Phys., vol. 97, 091101, 2005. [12] T. Wang, G. Raviprakash, F. Ranalli, C. N. Harrison, J. Bai, J. P. R. David, and P. J. Parbrook, J. P. Ao and Y. Ohno, “Effect of strain relaxation and exciton localization on performance of 350 nm AlInGaN quaternary light-emitting diodes,” J. Appl. Phys., vol. 97, 083104, 2005. [13] T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN single quantum well structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 5735-5739, 1999. [14] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip,” Jpn. J. Appl. Phys., vol. 41, pp. L371-L373, 2002. [15] Y. B. Lee, T. Wang, Y. H. Liu, J. P. Ao, Y. Izumi, Y. Lacroix, H. D. Li, J. Bai, Y. Naoi and S. Sakai, “High-Performance 348 nm AlGaN/GaN-based ultraviolet-light-emitting diode with a SiN buffer layer,” Jpn. J. Appl. Phys., vol. 41, pp. 4450-4453, 2002. [16] X. A. Cao, S. F.LeBoeuf, M. P. D'Evelyn, S. D. Arthur, and J. Kretchmer, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates,” Appl. Phys. Lett., vol. 84, pp. 4313-4315, 2004. [17] T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett., vol. 79, pp. 711-712, 2001. [18] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K.W. Fullmer, and W. G. Breiland, “Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence,” Appl. Phys. Lett., vol. 81, pp. 1940-1942, 2002. [19] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, “AlGaN/GaN quantum well ultraviolet light emitting diodes,” Appl. Phys. Lett., vol. 73, pp. 1688-1690, 1998. [20] T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 5735-5739, 1999. [21] S. Nakamura, S. J. Pearton and G. Fasol, The Blue Laser Diode: The Complete Story, 2nd ed, Springer, Berlin (2000). [22] O.-H Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett., vol. 71, pp. 2638-2640, 1997. [23] T. S. Zheleva, O.-H Nam, W. M. Ashmawi, J. D. Griffin, and R. F. Davis, “Lateral epitaxy and dislocation density reduction in selectively grown GaN structures,” J. Cryst. Growth., vol. 222, pp. 706-718, 2001. [24] L. Zhang, S.L. Gua, R. Zhanga, D. M. Hansena, M. P. Boleslawskib and T. F. Kuecha, “Lateral epitaxial overgrowth of GaN using diethyl gallium chloride in metal organic vapor phase epitaxy,” J. Cryst. Growth., vol. 235, pp. 115-123, 2002. [25] D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. Den Baars, and U. K. Mishra, “Anisotropic epitaxial lateral growth in GaN selective area epitaxy,” Appl. Phys. Lett., vol. 71, pp. 1204-1206, 1997. [26] B. A. Haskell, T. J. Baker, M. B. McLaurin, F. Wu, P. T. Fini, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Defect reduction in (1 00) m-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor phase epitaxy,” Appl. Phys. Lett., vol. 86, 111917, 2005. [27] V. Wagner, O. Parillaud, H. J. Bühlmann, and M. Ilegems, “Influence of the carrier gas composition on morphology, dislocations, and microscopic luminescence properties of selectively grown GaN by hydride vapor phase epitaxy,” J. Appl. Phys., vol. 92, pp. 1307-1316, 2002. [28] A. E. Romanov, P. Fini, and J. S. Speck, “Modeling the extended defect evolution in lateral epitaxial overgrowth of GaN subgrain stability,” J. Appl. Phys., vol. 93, pp. 106-114, 2003. [29] S. Tripathy, S. J. Chua, M. S. Hao, E. K. Sia, A. Ramam, J. Zhang, W. H. Sun, and L. S. Wang, “Micro-Raman scattering in laterally epitaxial overgrown GaN,” J. Appl. Phys., vol. 91, pp. 5840-5852, 2002. [30] C. Chen, J. Yang, H. Wang, J. Zhang, V. Adivarahan, M. Gaevski, E. Kuokstis, Z. Gong, M. Su, and M. A. Khan, “Lateral epitaxial overgrowth of fully coalesced A-Plane GaN on R-Plane sapphire,” Jpn. J. Appl. Phys., vol. 42, L640-L642, 2003. [31] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Phys. Stat. Sol. (a)., vol. 188, pp. 121-125, 2001. [32] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583-L585, 2001. [33] H. Kudo, K. Murakami, R. Zheng, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, and K. Kata, “Intense ultraviolet electroluminescence properties of the high-power InGaN-based light-emitting diodes fabricated on patterned sapphire substrates,” Jpn. J. Appl. Phys., 41, pp. 2484-2488, 2002. [34] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431-L1433, 2002. [35] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates,” Solid State Electron., vol. 47, pp. 1539-1542, 2003. [36] S. J. Chang1, Y. K. Su, Y. C. Lin, R. W. Chuang, C. S. Chang, J. K. Sheu, T. C. Wen, S. C. Shei, C. W. Kuo, and D. H. Fang, “MOCVD growth of InGaN/GaN blue light emitting diodes on patterned sapphire substrates” Phys. Stat. Sol. (c)., vol. 0, pp. 2253-2256, 2003. [37] Y. P. Hsu, S. J. Chang, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang, and S. C. Shei, “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs,” J. Cryst. Growth., vol. 261, pp. 466-470, 2004. [38] Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,” J. Cryst. Growth., vol. 272, pp. 327-332, 2004. [39] A. Bell, R. Liu F. A. Ponce, H. Amano, and I. Akasaki, “Light emission and microstructure of Mg-doped AlGaN grown on patterned sapphire,” Appl. Phys. Lett., vol. 82, pp. 349-351, 2003. [40] F. Dwikusuma, D. Saulys, and T. F. Kuech, “Study on sapphire surface preparation for III-Nitride heteroepitaxial growth by chemical treatments,” J. Electrochem. Soc., vol. 149, pp. G603-G608, 2002. [41] M. Kappelt, and D. Bimberg, “Wet chemical etching of high quality V-grooves with {111} a sidewalls on (001) InP,” J. Electrochem. Soc., vol. 143, pp. 3271-3273, 1996. [42] K. C. Chou, K. Hsu, P. C. Teng, C. Hsu, T. Y. Chou, F. H. Kan, and J. Y. Chu, J. Chinese. Ceramic. Soc., vol. 27, pp. 727, 1999. [43] A. Chakraborty, B. A. Haskell, H. Masui, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar m-Plane blue-light-emitting diode lamps with output power of 23.5 mW under pulsed operation,” Jpn. J. Appl. Phys., vol. 45, pp. 739-741, 2006. [44] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, pp. L797-L799, 1995. [45] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, “AlGaN/GaN quantum well ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 73, pp. 1688-1690, 1998. [46] C. H. Kuo, J. K. Sheu, S. J. Chang, Y. K. Su, L. W. Wu, J. M. Tsai, C. H. Liu, and R. K. Wu, “n-UV+blue/green/red white light emitting diode lamps,” Jpn. J. Appl. Phys., vol. 42, pp. 2284-2287, 2003. [47] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip,” Jpn. J. Appl. Phys., vol . 41, pp. L371-L373, 2002. [48] T. Wang, Y. H. Liu, Y. B. Lee, Y. Izumi, J. P. Ao, J. Bai, H. D. Li, and S. Sakai, “Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes,” J. Cryst. Growth., vol. 235, pp. 177-182, 2002. [49] P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers,” Appl. Phys. Lett., vol. 75, pp. 1706-1708, 1999. [50] T. S. Zheleva, O. H. Nam, M. D. Bremser and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,” Appl. Phys. Lett., vol. 71, pp. 2472-2474, 1997. [51] S. Kitamura, K. Hiramatsu, and N. Sawaki, “Fabrication of GaN hexagonal pyramids on dot-patterned GaN/Sapphire substrates via selective metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 34, pp. L1184-L1186, 1995. [52] S. Nakamura, M. Senoh, S. Nagahama, N. Isawa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, H. Umemoto, M. Sano, K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., vol. 72, pp. 211-213, 1998. [53] D. S. Wuu, W. K. Wang, W. C. Shin, R. H. Hrong, C. E. Lee, Y. W. Lin, J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, pp. 288-290, 2005. [54] T. Hino, S. Tomiya, T. Miyaima, K. Yanashima, S. Hashimoto, and M, Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett., vol. 76, pp. 3421-3423, 2000. [55] M. Smith, J. Y. Lin, H. X. Jiang, M. Asif Khan, “Room temperature intrinsic optical transition in GaN epilayers: The band-to-band versus excitonic transitions,” Appl. Phys. Lett., vol. 71, pp. 635-637, 1997. [56] M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-ehanced white light-emitting dodes using a new red phosphor,” Jpn. J. Appl. Phys., vol. 42, pp. L20-L23, 2003. [57] S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang, “GaN microdisk light emitting diodes,” Appl. Phys. Lett., vol. 76, pp. 631-633, 2000. [58] T. Kim, A. J. Danner, and K. D. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electron. Lett., vo. l41, pp. 1138-1139, 2005. [59] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa, and D. Ueda, “High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal, ” Jpn. J. Appl. Phys., vol. 43, pp. 5809-5813, 2004. [60] R. C. Tu, C. J. Tun, S. M. Pan, C. E. Tsai, J. K. Sheu, C. C. Chuo,G. C. Chi, and I. G. Chen, “Improvement of near-ultravilote InGaN-GaN light-emitting diodes through high pressure grown underlying GaN layers,” IEEE Photon. Technol. Lett., vol. 15, pp. 1050-1052, 2003. [61] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K.W. Fullmer, andW. G. Breiland, “Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence,” Appl. Phys. Lett., vol. 81, pp. 1940-1942, 2002. [62] I. Akasaki, “Renaissance and progress in crystal growth of nitride semiconductors,” J. Cryst. Growth., vol. 198/199, pp. 885-893, 1999. [63] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN,” Jpn. J. Appl. Phys., vol. 37, pp. L316-L318, 1998. [64] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal,T. Smith, D. Batchelor, and R. F. Davis, “Pendeoepitaxy of gallium nitride thin films,” Appl. Phys. Lett., vol. 75, pp. 196-198, 1999. [65] D. Martin, J. Napierala, M. Ilegems, R. Butté, and N. Grandjean, “High quality thin GaN templates grown by hydride vapor phase epitaxy on sapphire substrates,” Appl. Phys. Lett., vol. 88, 241914, 2006. [66] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, H. L. Zhou, and C. G. Fonstad, “Improvement of microstructural and optical properties of GaN layer on sapphire by nanoscale lateral epitaxial overgrowth,” Appl. Phys. Lett., vol. 88, 211908, 2006. [67] S. Takumi, S. Hiroki, Y. Katsunori, Y. Masahito, and H. Kazumasa, “Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth,” J. Cryst. Growth., vol. 189, pp. 67-71, 1998. [68] X. Li, S. G. Bishop, and J. J. Coleman, “GaN epitaxial lateral overgrowth and optical characterization,” Appl. Phys. Lett., vol. 73, pp. 1179-1181, 1998. [69] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett., vol. 71, pp. 2638-2640, 1997. [70] D. M. Tricker, K. Jacobs, and C. J. Humphreys, “Characterisation of epitaxial laterally overgrown gallium nitride using transmission electron microscopy,” phys. stat. sol. (b)., vol. 216, pp. 633-638, 1999. [71] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Hrong, T. C. Hsu, D. C. Huo, M. J. Jou, Y. H. Yu, and A. Lin, ”Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,” IEEE J. Quantum Electron. vol. 41, pp.1403-1408, 2005. [72] W. K. Wang, D. S. Wuu, W. C. Shih, J. S. Fang, W. Y. Lin, P. Han, R. H. Horng, T. C. Hsu, T. C. Huo, M. J . Jou, a. Lin, and Y. H. Yu,”Near-ultraviolet InGaN/GaN light emitting diode grown on patterned sapphire substrates,” Jpn. J. Appl. Phys., vol. 44, pp. 2512-2515, 2005. [73] W. Kern, RCA Rev., vol. 39, pp. 278, 1978. [74] S. Srinivasan, M. Stevens, F. A. Ponce, and T. Mukai, “Polychromatic light emission from single InGaN quantum wells grown on pyramidal GaN facets,” Appl. Phys. Lett., vol. 87, 131911, 2005. [75] B. Beaumont, Ph. Vennéguès, and P. Gibart, “Epitaxial lateral overgrowth of GaN,” Phys. Stat. Sol. (b)., vol. 227, pp. 1-43, 2001. [76] L. Macht, J. L. Weyher, A. Grzegorczyk, and P. K. Larsen, “Statistical photoluminescence of dislocations and associated defects in heteroepitaxial GaN grown by metal organic chemical vapor deposition,” Phys. Rev. B., vol. 71, 073309, 2005. [77] L. Macht, P. R. Hageman, S. Haffouz, and P. K. Larsen, “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates,” Appl. Phys. Lett., vol. 87, 131904, 2005. [78] D. Wang, S. Jia, K. J. Chen, K. M. Lau, Y. Dikme, P. van Gemmern, Y. C. Lin, H. Kalisch, R. H. Jansen, and M. Heuken, “Micro-Raman-scattering study of stress distribution in GaN films grown on patterned Si(111) by metal-organic chemical-vapor deposition,” J. Appl. Phys., vol. 97, 056103, 2005. [79] C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “Enhancement of light extraction of GaN based light-emitting diodes with a microstructure array,” Opt. Eng., vol. 43, pp. 1700-1701 2004. [80] J. Wang, L. W. Guo, H. Q. Jia,Z. G. Xing, Y. Wang, H. C. Chen, and J. M. Zhou, “Origin of selective growyh of GaN on maskless V-grooved sapphire substrates by metalorginic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 44, pp. L982-L984, 2005. [81] S. Nakamura, T. Mukai, and M. Senou, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994. [82] C. C. Chen, C. Y. Wu, T. F. Wu, “LED back-light driving system for LCD panels,” Applied Power Electronics Conference and Exposition, 2006. APEC ''06 Twenty-First Annual IEEE., pp. 19-23, 2006. [83] H. Wu; X. Zhang; C. Guo; J. Xu; M. Wu; and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photon. Technol. Lett., vol.17, pp.1160-1162, 2005. [84] H. C. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, and Y. C. Lin, “Nitride-based cascade near white light-emitting diodes” IEEE Photon. Technol. Lett., vol.14, pp. 908-910, 2002. [85] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383-9385, 2003. [86] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J.Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174-2176, 1993. [87] J. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong, “Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes” IEEE Photonics. Technol. Lett., vol. 16, pp. 1450-1452, 2004. [88] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett., vol. 78, pp. 3379-3381. [89] M. Koike, N. Shibata, H. Kato, and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications” IEEE J. Sel. Topics Quantum Electron., vol. 8, pp. 271-277, 2002. [90] J. O. Song, J. S. Wkwa, and T. Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip light-emitting diodes,” Appl. Phys. Lett., vol. 86, 062103, 2005. [91] C. C. Pan, G. T. Chen, W. J. Hsu, C. W. Lin, and J. I. Chyi,” Thermal stability improvement by using Pd/NiO/Al/Ti/Au reflective ohmic contacts to p-GaN for flip-chip ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 88, 062113, 2006. [92] S. H. Chiu, T. L. Shao, Chih Chen, D. J. Yao, and C. Y. Hsu, “Infrared microscopy of hot spots induced by joule heating in flip-chip SnAg solder joints under accelerated electromigration,” Appl. Phys. Lett., vol. 88, 022110, 2006. [93] J. O. Song, W. K. Hong, Y. Park, J. S. Kwak, and T. Y. Seong, “Low-resistance Al-based reflectors for high-power GaN-based flip-chip light-emitting diodes,” Appl. Phys. Lett., vol. 86, 133503, 2005. [94] J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, 113505, 2006. [95] H. W. Choi, M. D. Dawson, P. R. Edwards, and R. W. Martin, “High extraction efficiency InGaN micro-ring light-emitting diodes,” Appl. Phys. Lett., vol. 83, pp. 4483-4485, 2003. [96] N. Narendran, and Y. Gu, “Life of LED-based white light sources,” IEEE J. Display. Tech., vol. 1, pp. 167-171, 2005. [97] A. Yasan, R. McClintock, K. Mayes, S. R. Dravish, H. Zhang, P. Kung, M. Razegih, S. K. Lee, and J. Y. Han, “Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire,” Appl. Phys. Lett., vol. 81, pp. 2151-2153, 2002. [98] X. A. Cao, S. F. LeBoeuf, M. P. D'Evelyn, S. D. Arthur, and J. Kretchmer, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates,” Appl. Phys. Lett., vol. 84, pp. 4313-4315, 2004. [99] H. W. Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface,” IEEE Photon. Technol. Lett., vol. 17, pp. 983-985, 2005. [100] S. I. Na, D. S. Han, S. S. Kim, J. H. Lim, J. Y. Kim, and S. J. Park, “Surface texturing of p-GaN layer for efficient GaN LED by maskless selective etching,” phys. stat. sol. (c)., vol. 2, pp. 2916-2919, 2005. [101] R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Döhler, B. Dutta, and G. Borghs, “Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes,” Appl. Phys. Lett., vol. 74, pp. 2256-2258, 1999. [102] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004. [103] D. Morita, M. Sano, M. Yamamoto, M. Nonaka, K. Ysutomo, K. Akaishi, S. Nagahama, and T. Mukai, “Over 200 mW on 365 nm ultraviolet light emitting diode of GaN-free structure,” Phys. Stat. Sol. (a)., vol. 200, pp. 114-117, 2003. [104] T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Optical degradation of InGaN/AlGaN light-emitting diode on sapphire substrate grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 69, pp. 830-832, 1996. [105] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett., vol. 72, pp. 599-601, 1998. [106] D. S. Wuu, S. C. Hsu, S. H. Huang, C. C. Wu, C. E. Lee, and R. H. Horng, “GaN/mirror/si light-emitting diodes for vertical current injection by laser lift-off and wafer bonding techniques,” Jpn. J. Appl. Phys., vol. 43, pp. 5239-5224, 2004. [107] S. H. Huang, R. H. Horng, S. C. Hsu, T. Y. Chen, and D. S. Wuu, “Surface texturing for wafer-bonded vertical-type GaN/Mirror/Si light-emitting diodes,” Jpn. J. Appl. Phys., vol. 44, pp. 3028-3031, 2005. [108] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, pp. 1360-1361, 1999. [109] B. S. Tan, and S. Yuan, “Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate,” Appl. Phys. Lett., vol. 84, pp. 2757-2759, 2004. [110] D. L. Mathine, H. Nejad, D. R. Allee, R. Droopad, and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett., vol. 69, pp. 463-465, 1996. [111] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hau, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-power GaN-Mirror-Cu light-emitting diodes for vertical current injection using laser lift-off and electroplating techniques,” IEEE Photon. Technol. Lett., vol. 17, pp. 1809-1811 2005. [112] H. P. Ho, K. C. Lo, G. G. Siu, C. Surya, K. F. Li, and K. W. Cheah, “Raman and photoluminescence spectroscopy of free-standing GaN separated from sapphire substrates by 532 nm Nd:YAG laser lift-off,” Mater. Chem. Phys., vol. 81, pp. 99-103, 2003. [113] J. Parks, K. Brennan, and A. Smith, “Two-dimensional model of photon recycling in direct gap semiconductor devices,” J. Appl. Phys., vol. 82, pp. 3493-3498 1997. [114] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1991. [115] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K. W. Fullmer, and W. G. Breiland, “Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence,” Appl. Phys. Lett., vol. 81, pp. 1940-1942, 2002. [116] I. Akasaki, and H. Amano, “Crystal growth and conductivity control of group III-Nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys., vol. 36, pp. 5393-5408, 1997. [117] N. J. Berry Ann, L. E. Rodak, Kalyan Kasarla, Nanying Yang, and D. Korakakis, “Study of epitaxial lateral overgrowth of GaN for application in the fabrication of optoelectronic devices,” Proc. SPIE 6017, 60170D, 2005. [118] Z. L. Weber, and D. Cherns, “Microstructure of laterally overgrown GaN layers,” J. Appl. Phys., vol. 89, pp. 7833-7840, 2001. [119] O. H. Nam, T. S. Zheleva, M. D. Bremser, R. F. Davis, “Lateral epitaxial overgrowth of GaN films on SiO2 areas via metalorganic vapor phase epitaxy,” J. Electron. Mater., vol. 27, pp. 233-237, 1998. [120] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, and J. P. Ibbetson, “Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition,” Appl Phys Lett., vol. 72, pp. 2247-2249, 1998. [121] H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “X-ray diffraction analysis of the defect structure in epitaxial GaN,” Appl. Phys. Lett., vol. 77, pp. 2145-2147 2000.
摘要: 本論文主要為以有機金屬化學氣相磊晶法研製並分析氮化銦鎵近紫外光發光二極體成長於圖案化藍寶石基板之特性,其中圖案化藍寶石基板的製作方法主要可以分為乾式蝕刻與濕式蝕刻兩大部份,進一步將其應用在覆晶封裝與金屬散熱基板上,並結合橫向磊晶技術進一步降低磊晶薄膜缺陷密度。 首先在乾式蝕刻圖案化藍寶石基板的應用上,將發光波長為410 nm的氮化銦鎵近紫外光發光二極體成長在最佳蝕刻深度(約1.5 um)的圖案化藍寶石基板上,當元件操作在20 mA時其光輸出功率可由8.6 mW提升至10.4 mW,外部量子效率提升29%。透過穿透式電子顯微鏡分析結果,圖案化藍寶石基板貫穿式差排會有彎曲的現象,而且整體差排密度明顯降低約10倍,根據實驗結果發現元件輸出功率的提升來自缺陷密度的降低及光取出效率的增加。我們亦利用化學溼蝕刻圖案化藍寶石基板來成長近紫外光發光二極體,當元件操作在20 mA其光輸出功率可由7.45 mW提升至9.35 mW,約有25%的提升,依據實驗與光學模擬的結果,我們發現溼蝕刻圖案化藍寶石基板所形成的斜面可以提高光取出率,使更多的光子逃離氮化鎵/籃寶石基板界面。 另外我們將圖案化藍寶石基板應用在覆晶封裝發光二極體上,發現在元件光輸出功率上比傳統藍寶石基板覆晶結構發光二極體上59元件光輸出功率的提升可以歸因於氮化鎵薄膜成長於圖案化藍寶石基板上會產生橫向磊晶的效果而造成氮化鎵磊晶品質改善,以及藍寶石基板上的凹凸圖案會產生光散射的效果增加光的取出率。我們在利用雷射剝離結合電鍍技術成功的製作出微柱狀電鍍銅基板發光二極體。以此技術製作出的元件具有良好的光取出率,跟平面結構的元件相比較,當元件操作在350 mA時其發光強度增強35%,顯示電鍍基板發光二極體具有優越的熱傳導效應及電氣特性。論文最後我們利用圖案化藍寶石基板結合橫向磊晶技術,成功的將缺陷密度從2*109 cm-2 降低至6*105 cm-2 並將元件輸出功率提升了30%,經由以上這些實驗與分析結果充份顯示出「圖案化藍寶石基板」技術之可行性,有機會取代氮化鎵基板,未來應用於紫外光發光二極體甚至雷射二極體將深具潛力。
The major focus in this dissertation is to fabricate and analyze the InGaN-based near-ultraviolet (UV) light-emitting diodes (LEDs) grown on patterned sapphire substrates (PSSs) using metalorganic chemical vapor deposition. Dry and wet etching methods were developed to fabricate the PSSs. Some applications such as flip-chip and metal-substrate LEDs were also investigated. The PSS was prepared for using a periodic hole pattern (diameter: 3 μm; spacing: 3 μm), where the etching depths ranged from 0.5 to 1.5 μm. From transmission-electron-microscopy and etch-pit-density studies, the dry-etched PSS with an optimum pattern etching depth (1.5 μm) was confirmed to be an efficient way to reduce the thread dislocations densities in the GaN microstructure. For a typical lamp-form LED (@ 20 mA), it was found that the output power increased from 8.6 to 10.4 mW, corresponding to about 29increases in the external quantum efficiency at room temperature. The achieved improvement of the output power is not only due to the improvement of the internal quantum efficiency upon decreasing the dislocation density, but also due to the enhancement of the light extraction efficiency using the PSS. Similar trend was also found in our PSS LEDs with periodic stripe grooves. A better long-term reliability of the PSS LED performance was observed. We also adopt a chemical wet-etched pyramidal PSS to fabricate the near-UV LEDs, which can avoid surface damage induced by using dry etching process. Under a 20-mA forward injection current, the output power of the conventional and pyramidal PSS LEDs (in epoxy lamp form) were 7.45 and 9.35 mW, respectively. A 25% enhancement in output power was achieved in the pyramidal PSS LED as compared with that of the conventional LED sample. From light-tracing calculation, the pyramidal reflector arrays can offer more probability of escaping photons from the GaN/sapphire interface, resulting in an increase in light extracting efficiency. Further development of the PSS, the high output power of 49.58 mW from a 425 nm InGaN-based flip-chip LED (chip size: 1 mm2) was fabricated onto PSS at a current injection of 350 mA. The light output power was greatly increased by 59% for the PSS sample at an injection current of 350 mA compared with that of the conventional flip-chip LED. Moreover, we achieved 39% higher light output power at a micropillar 400-nm InGaN/Cu LED under 350 mA. This significant enhancement in output power could be attributed to the increase of the extraction efficiency which is a result of the increase in photons escaping probability caused by scattering the emission light at the micropillar surface. On the other hand, the epitaxial lateral overgrowth (ELOG) is a commonly used technique to reduce the threading dislocations in the GaN/sapphire heterostructure. In our work, a new approach to improve the defect density and internal quantum efficiency of UV emitters was proposed using a combination of ELOG and PSS techniques. Especially, a complementary dot array pattern corresponding to the underlying PSS was used for the ELOG-SiO2 mask design. The ELOG/SiO2/GaN/PSS structure can reduce the defect density to a level of 105 cm-2. The internal quantum efficiency of the InGaN-based ELOG-PSS LED sample showed three times in magnitude as compared with that of the conventional GaN/sapphire one. Under a 20-mA injection current, the output powers of ELOG-PSS, PSS and conventional LED samples were measured to be 3.3, 2.9 and 2.5 mW, respectively. The enhanced output power could be due to a combination of the reduction in dislocation density (by ELOG) and improved light extraction efficiency (by PSS). Unlike the previous double ELOG approaches, the presented ELOG-PSS structure needs only one regrowth process and will have high potential in future high-quality UV emitters, even blue/green laser diode applications. Based on these results, the advantages of using PSSs for the InGaN-based LED application were disclosed.
URI: http://hdl.handle.net/11455/11147
顯示於類別:材料科學與工程學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。