Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11157
標題: 以熱燈絲化學氣相沈積法進行矽薄膜之研製、特性分析及在太陽電池之應用
Fabrication and Characterization of Silicon Thin Films Using Hot-Wire CVD for Solar Cell Applications
作者: 連水養
Lien, Shui-Yang
關鍵字: Hot-Wire Chemical Vapor Deposition
熱燈絲化學氣相沉積
Silicon Thin Film
Solar Cell
Heterojunction Solar Cell
Device Simulation
矽膜
太陽電池
異質接面太陽電池
元件模擬
出版社: 材料工程學系所
引用: [1] S. F. B. Tett, P. A. Stott, M. R. Allen, W. J. Ingram and J. F. B. Mitchell,” Causes of twentieth-century temperature change near the Earth''s surface”, Nature, vol. 399 (1999) pp. 569-572. [2] N. P. Gillett, F. W. Zwiers, A. J. Weaver, and P. A. Stott, “Detection of human influence on sea-level pressure”, Nature, vol. 422 (2003) pp. 292-294. [3] Energy for the Future: Renewable sources of energy. White Paper for a Community Strategy and Action Plan, European Commission COM (97) 599 final (1997). [4] T. Tomita, “Toward giga-watt production of silicon photovoltaic cells, modules and systems”, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, USA, 2005, pp. 7-11. [5] A. Milner, “Towards larger and thinner wafers used in photovoltaic”, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, USA, 2005, pp. 186-192. [6] Wissenschaftlicher Beirat der Bundesregierung, Welt im Wandel - Energiewende zur Nachhaltigkeit (Springer, Berlin, Germany, 2003). [7] H. F. Sterling and R. C. G. Swann, “Chemical Vapor deposition promoted by r.f. discharge”, Solid-State Electron, vol. 8 (1965) pp. 653-654. [8] R. C. Chittick, J. H. Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon”, J. Electrochem. Soc., vol. 116 (1969) pp. 77-81. [9] A. J. Lewis, J. G. A. N. Connel, W. Paul, J. R. Pawlik and R. J. Temkin, in Tetrahedrally Bonded Amorphous Semiconductors, eds. M. H. Brodsky, S. Kirkpatrck, and D. Weaire, AIP Conf. Proc., vol. 20 (1974) p. 27. [10] A. Triska, D. Dennison and H. Fritzsche, “Hydrogen content in amorphous Ge and Si prepared by r.f. decomposition of GeH4 and SiH4”, Phys. Soc., vol. 20 (1975) p. 392. [11] A. Matsuda, “Formation kinetics and control of microcrystalline in c-Si:H from glow discharge plasma”, J. Non-Cryst. Solids, vol. 59-60 (1983) pp. 767-774. [12] M. Faraji, S. Gokhale, S. M. Goudhari, M. G. Takwale and S. V. Ghaisas, “High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications”, Appl. Phys. Lett., vol. 60 (1992) pp. 3289-3291. [13] J. K. Rath, H. Meiling and R. E. I. Schropp, “Purely intrinsic poly-silicon films for n-i-p solar cells”, Jpn. J. Appl. Phys., vol. 36 (1997) pp. 5336-5443. [14] P. Müller, E. Conrad, T. R. Omstead and P. Kember, “Deposition of Poly-Si and Si-Based Dielectrics by ECRCVD and RTCVD”, Conference Proceedings of the 13th European Photovoltaic Solar Energy Conference, 1995, pp. 1742-1745. [15] S. Koynov, S. Grebner, P. Radojkovic, E. Hartmann, R. Schwarz, L. Vasilev, R. Krankenhagen, I. Sieber, W. Henrion and M. Schmidt, “Initial stages of microcrystalline silicon film growth”, J. Non-Cryst. Sol., vol. 198-200 (1996) pp. 1012-1016. [16] S. Hamma, P. R. Cabarrocas, “Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution”, J. Non-Cryst. Sol., vol. 227-230 (1998) pp. 852-856. [17] H. Matsumura, A. Heya, R. Iizuka, A. Izumi, A. Q. He and N. Otsuka, “Low-temperature formation of device-quality polysilicon films by cat-CVD method”, Mat. Res. Soc. Symp. Proc., vol. 452 (1997) pp. 983-988. [18] D. Peiró, J. Bertomeu, C. Voz, J. M. Asensi, J. Puigdollers and J. Andreu, “Structure of microcrystalline silicon films deposited at very low temperatures by hot-wire CVD”, Conference Proceedings of the 14th European Photovoltaic Solar Energy Conference, 1997, pp. 1428-1432. [19] Q. Wang, E. Iwaniczko, A. H. Mahan and D. L. Williamson, “Microcrystalline Si and (Si,Ge) Solar Cells”, Mat. Res. Soc. Symp. Proc., vol. 507 (1998) pp. 903-908. [20] R. E. I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells, Modeling, Materials and Device Technology", Kluwer Academic Publishers, 1998. [21] R. E. I Schropp, K. F. Feenstra, E. C. Molenbroek, H. Meiling and J. K. Rath, “Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapor deposition”, Phil. Mag. B, vol. 76-3 (1997) pp. 309-321. [22] V. Patrick, “Hot-Wire chemical vapor deposition of polycrystalline silicon from gas molecule to solar cell”, Ph.D thesis, Universiteit Utrecht, Nederlands, 2002. [23] H. Wiesmann, A. K. Ghosh, T. McMahon and M. J. Strongin, “a-Si : H produced by high-temperature thermal decomposition of silane”, J. Appl. Phys., vol. 50 (1979) pp. 3752-3754. [24] H. Matsumura and H. Tachibana, “Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2”, Appl. Phys. Lett., vol. 47 (1985) pp. 833-835. [25] H. Matsumura, “Catalytic chemical vapor deposition (CAD-CVD) method producing high quality hydrogenated amorphous silicon”, Jpn. J. Appl. Phys., vol. 25 (1986) pp. L949-951. [26] M. Heintze, R. Zedlitz, H. N. Wanka and M. B. Schubert, “Amorphous and microcrystalline silicon by hot wire chemical vapor deposition”, J. Appl. Phys., vol. 79 (1996) pp. 2699-2706. [27] A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon”, J. Appl. Phys., vol. 69 (1991) pp. 6728-6730. [28] J. Doyle, R. Robertson, G. H. Lin, M. Z. He and A. Gallagher, “Production of high-quality amorphous silicon films by evaporative silane surface decomposition”, J. Appl. Phys., vol. 64 (1988) pp. 3215-3223. [29] E. C. Molenbroek, A. H. Mahan, E. J. Johnson and A. C. Gallagher, “Film quality in relation to deposition conditions of a-SI:H films deposited by the hot wire'' method using highly diluted silane”, J. Appl. Phys., vol. 79 (1996) pp. 7278-7292. [31] S. Bauer, B. Schröder and H. Oechsner, “The effect of hydrogen dilution on the microstructure and stability of a-Si:H films prepared by different techniques”, J. Non-Cryst. Solids, vol. 227-230 (2003) pp. 34-38. [32] M. K. V. Veen and R. E. I. Schropp, “Beneficial effect of a low deposition temperature of hot-wire deposited intrinsic amorphous silicon for solar cells”, J. Appl. Phys., vol. 93 (2003) pp. 121-125. [33] S. Klein, F. Finger, R. Carius, B. Rech, L. Houben, M. Luysberg and M. Stutzmann, “High efficiency thin film solar cells with intrinsic microcrystalline silicon prepared by Hot Wire CVD”, Mat. Res. Soc. Symp. Proc., vol. 715 (2002) A26.2. [34] B. Stannowski, R. E. I Schropp, R. B. Wehrspohn and M. J. Powell, “Amorphous-silicon thin-film transistors deposited by VHF-PECVD and hot-wire CVD”, J. Non-Cryst. Solids, vol. 299-302 (2002) pp. 1340-1344. [35] H. Matsumura, H. Umemoto and A. Masuda, “Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon”, J. of Non-Crystalline Solids, vol. 338-340 (2004) pp. 19-26. [36] A. Masuda, A. Izumi, H. Umemoto and H. Matsumura, “What is the difference between catalytic CVD and plasma-enhanced CVD ? Gas-phase kinetics and film properties”, Vacuum, vol. 66 (2002) pp. 293-297. [37] N. Honda, A. Masuda and H. Matsumura, “Transport mechanism of deposition precursors in catalytic chemical vapor deposition studied using a reactor tube”, J. Non-Cryst. Solids, vol. 266-269 (2000) pp. 100-104. [38] C. Horbach, W. Beyer and H. Wagner, “Deposition of a-Si:H by high temperature thermal decomposition of silane”, J. Non-Cryst. Solids, vol. 114 (1989) pp. 187-189. [39] B. P. Nelson, Y. Xu, A. H. Mahan, D. L. Williamson and R. S. Crandall, “Amorphous silicon devices operate best in the near IR”, Mater. Res. Soc. Symp. Proc., vol. 609 (2000) A22.8.1. [40] A. E. Becquerel, “Mémoire sur les effets électriques produits sous l influence des rayons solaires”, Compt. Rendus de L' Academic des Sciences, vol. 9 (1839) pp.561-567. [41] W. Adams and R. Day, Proc. Roy. Soc. vol. A25 (1877) p. 113. [42] W. shockley, “The Theory of p-n Junction in Semiconductors and p-n Junction Transistors”, Bell Syst. Tech. Jurn., vol. 28 (1949) pp. 435-441. [43] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode”, Phys. Rev., vol. 74 (1948) pp. 230-231. [44] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 25 (1954) pp. 676-677. [45] D. E. Carlson and C. R. Wronski, “Electroabsorption avalanche photodiodes”, Appl. Phys. Lett., vol. 28 (1976) pp. 671-673. [46] K. W. Mitchell and C. Eberspacher, “Assessment of MOCVD- and MBE-growth GaAs for high-efficiency solar cell applications”, Trans. Elec. Dev., vol. 37 (1990) pp. 469-477. [47] M. Wolf, “Historical development of solar cells”, in Solar Cells, Backus C. E., IEEE Press, Piscataway. [48] J. Zhao, A. Wang and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Sol. Energy Mat. and Sol. Cells vol. 65 (2001) pp.429-435. [49] T. Sawada et al., “High-efficiency a-Si/c-Si heterojunction solar cell”, Conf. Record of the IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA, 1994, pp. 1219-1226. [50] M. Tucci, G. D. Cesare, “17 % efficiency heterostructure solar cell based on p-type crystalline silicon”, J. Non-Cryst. Solids, vol. 338-340 (2004) pp. 663-667. [51] E. Centurioni, D. Iencinella, R. Rizzoli and F. Zignani, “Silicon heterojunction solar cell: a new buffer Layer concept with low-temperature epitaxial silicon”, IEEE Transactions on Electron Devices, vol. 51 (2004) pp. 1818-1824. [52] H. M. Branz, C. W. Teplin, M. Page, E. Iwaniczko, L. Roybal, D. H. Levi, R. Bauer, Y. Xu, P. Stradins, T. Wang and Q. Wang, “Rcent advances in hot-wire R&D at NREL: From 18 % silicon heterojunction cells to silicon epitaxy low temperatures”, Conf. Record of the 4th International Conference on Hot-Wire CVD (Cat-CVD) process, Gifu, Japan, 2006, p. 327-330. [53] C. Voz, D. Munoz, M. Fonrodona, I. Martin, J. Puigdollers, R. Alcubilla, J. Escarre, J. Bertomeu and J. Andreu, “Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV”, Thin Solid films, vol.511-512 (2006) pp. 415-419. [54] Q. Wang, M. R. Page, Y. Xu, E. Iwaniczko, E. Whnams, T. H. Wang, “Development of a hot-wire chemical vapor deposition n-type emitter on p-type crystalline Si-based solar cells”, Thin Solid films, vol. 430 (2003) pp. 208-211. [55] Q. Zhang, M. Zhu, F. Liu and J. Li, “Influence of hydrogen treatment time on the performance of nc-Si:H/c-Si heterojunction solar cells in HWCVD process”, Conf. Record of the 15th International Photovoltaic Science & Engineering Conversion, Shanghai, China, 2005, p. 1170-1171. [56] K. Maknys, A. G. Ulyashin, H. Stiebig, A. Y. Kuznetsov and B. G. Svensson, “Analysis of ITO thin layers and interfaces in heterojunction solar cells structures by AFM, SCM and SSRM methods”, Thin Solid films, vol. 511-512 (2006) pp. 98-102. [57] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells high-efficiency crystalline Si cells with novel structure”, Prog. Phototovolt. Res. Appl., vol. 8 (2000) pp. 503-513. [58] M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van dert Werf, R. E. I. Schropp and W. F. van der Weg, “Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells”, J. Appl. Phys., vol. 82 (1997) pp. 6089-6095. [59] J. Pl, E. Centurioni, C. Summonte, R. Rizzoli, A. Migliori, A. Desalvo and F. Zignani, “Homojunction and heterojunction silicon solar cells deposited by low temperature-high frequency plasma enhanced chemical vapour deposition”, Thin Solid Films, vol. 405 (2002) pp. 248-255. [60] B. Jagannathan and W. A. Anderson, “Defect study in amorphous silicon/crystalline silicon solar cells by thermally stimulated capacitance”, J. Appl. Phys., vol. 82 (1997) pp. 1930-1935. [61] C. Voz, I. Martin, A. Orpella, J. Puigdollers, M. Vetter, R. Alcubilla, D. Soler, M. Fonrodona, J. Bertomeu and J. Andreu, “Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films”, Thin Solid Films, vol. 430 (2003) pp. 270-273. [62] M. Kunst, S. V. Aichberger, G. Citarella and F. Wu, “Amorphous silicon/crystalline silicon heterojunctions for solar cells”, J. Non-Cryst. Solids, vol. 299-302 (2002) pp. 1198-1202. [63] P. Torres, J. Meier, R. Fluckiger, U. Kroll, J. A. A. Selvan, H. Keppner and A. Shah, “Device grade microcrystalline silicon owing to reduced oxygen contamination”, Appl. Phys. Lett., vol. 69 (1996) pp. 1373-1375. [64] V. P. A. T. T. Van, O. L. J. Gijzeman, J. K. Rath and R. E. I. Schropp, “The influence of different catalyzers in hot-wire CVD for the deposition of polycrystalline silicon thin films”, Thin Solid Films, vol. 395 (2001) pp. 194-197. [65] K. Ishibashi, “Development of the Cat-CVD apparatus and its feasibility for mass production”, Thin Solid Films, vol. 395 (2001) pp. 55-60 [66] A. H. Mahan, “Hot wire chemical vapor deposition of Si containing materials for solar cells”, Sol. Energy Mater. Sol. Cells, vol. 78 (2003) pp. 299-327. [67] M. Stöger, A. Breymesser, V. Schlosser, M. Ramadori, V. Plunger, D. Peiro, C. Voz, J. Bertomeu, M. Nelhiebel, P. Schattscheneider and J. Andreu, “Investigation on defect formation and electronic transport in microcrystalline silicon deposited by Hot Wire CVD”, Physica B, vol. 273-274 (1999) pp. 540-543. [68] V. Schlosser, A. Breymesser, D. Soler, M. Fonrodona, C. Voz and J. Bertomeu, “A Deep Level Transient Study of Impurity Centres in Microcrystalline Silicon Obtained by Hot-Wire Chemical Vapour Deposition”, Proceedings of the 16th ECPVSEC, Glasgow, 2000, pp. 510-513. [69] C. Voz, D. Peiro, J. Bertomeu, D. Soler, M. Fonrodona and J. Andreu, “Optimisation of doped microcrystalline silicon films deposited at very low temperatures by hot-wire CVD”, Materials Science and Engineering B, vol. 69-70 (2000) pp. 278-283. [70] H. Matsumura, “Formation of Silicon-Based Thin Films Prepared by Catalytic Chemical Vapor Deposition (Cat-CVD) Method”, Jpn. J. Appl. Phys., vol. 37, (1998) pp. 3175-3187. [71] F. Diehl, M. Scheib, B. Schröder and H. Oechsner, “Enhanced optical absorption in hydrogenated microcrystalline silicon: an absorption model”, J. Non-Cryst. Solids, vol. 227-230 (1998) pp. 973-976. [72] H. Matsumura, “Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon”, J. Appl. Phys., vol. 65 (1989) pp. 4396-4402. [73] S. Morrison and A. Madan, “Deposition of amorphous and microcrystalline silicon using a graphite filament in the hot wire chemical vapor deposition technique”, J. Vac. Sci. Technol. A, vol. 19 (2001) pp. 2817-2819. [74] W. Ruihua, L. Zhiqiang and L. Li, L. Jahe, “Study of hot wire chemical vapor deposition technique for silicon thin film”, Sol. Energy Mater. Sol. Cells, vol. 62 (2000) pp. 193-199. [75] P. A. T. T. V. Veenendaal, C. H. M. Werf and R. E. I. Schropp, “Influence of grain environment on open circuit voltage of hot-wire chemical vapour deposited Si:H solar cells”, J. Non-Cryst. Solids, vol. 299-302 (2002) pp. 1184-1188. [76] J. Guillet, C. Niikura, J. E. Bouree, J. P. Kleider, C. Longeaud and R. Brüggemann, “Microcrystalline silicon deposited by the hot-wire CVD technique”, Mat. Sci. Eng. B, vol. 69-70, (2000) pp. 284-288. [77] R. E. I.Schropp, “Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost”, Thin Solid Films, vol. 403-404, (2002) pp. 17-25. [78] J. B. Balaguero, “Progress in hot-wire deposition nanocrystalline silicon solar cellsS”, Ph.D thesis, Universital de Barcelona, Spain, 2003. [79] Source: Y. Akasaka, Osaka University, SEMI-KANC Nanotechnology Seminar, January 31, 2007. [80] J. Tauc, “Optical Properties of Solids”, North-Holland, Amsterdam, 1972. [81] P. J. Zanzucchi, C. R. Wronski and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon”, J. Appl. Phys., vol. 48 (1977) pp. 5227-5236. [82] E. Bustarret, M. A. Hachia, and M. Brunel, “Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy”, Appl. Phys. Lett., vol. 52 (1988) pp. 1675-1677. [83] M. Vanecek, A. Poruba, Z. Remes. N. Beck, M. Nesladek, “Optical Properties of Microcrystalline Materials”, J. Non-Cryst. Sol., vol. 227-230 (1998) pp. 967-972. [84] Z. Iqbal, S. Veprek, A. P. Webb and P. Capezzuto, “Raman scattering from small particle size polycrystalline silicon”, Solid State Commum., vol. 37 (1981) pp. 993-996. [85] T. Okada, T. Iwaki, K. Yamamoto, H. Kasahara and K. Abe, “Raman scattering from gas-evaporated silicon small particles”, Solid State Commum., vol. 49 (1984) pp. 809-812. [86] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, vol. 16556 (1977) pp. 3556-3571. [87] N. Maley, “Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys”, Phys. Rev. B, vol. 46, (1992) pp. 2078-2085. [88] J. K. Rath, R. E. I. Schropp and W. Beyer, “Hydrogen at compact sites in hot-wire chemical vapour deposited polycrystalline silicon films”, J. Non-Cryst. Sol., vol. 266-269 (2000) pp. 190-194. [89] J. Meier, P. Torres, R. Platz, S. Dubail, U. Kroll, J. A. Anna Selvan, N. P. Vaucher, C. Hoh, D. Fischer, H. Keppner, A. Shah, K. D. Ufert, P. Giannoules and J. Koeler, Amorphous Silicon Technology, vol. 420 (1996) pp. 879-885. [90] D. T. Britton, A. Hempel, M. Harting, G. Kogel, P. Sperr, W. Triftshauser, C. Arendse and D. Knoesen, “Annealing and recrystallization of hydrogenated amorphous silicon”, Phy. Rev. B, vol. 64 (2001) pp. 75403-1-75403-8. [91] J. Wallinga, “III-V Solar Cells and the Metal Organic Vapour Phase Epitaxy Process”, Ph.D. thesis, Universiteit Utrecht, 1998. [92] G. Moddel, D. A. Anderson and W. Paul, “Derivation of the low-energy optical-absorption spectra of a-Si:H from photoconductivity”, Phys. Rev. B, vol. 22 (1980) pp. 1918-1925. [93] M. Zhu and H. Fritzsche, “Density of states and mobility-lifetime product in hydrogenated amorphous silicon, from thermostimulated conductivity and photoconductivity measurements”, Phil. Mag. B, vol. 53 (1986) pp. 41-54. [94] W. B. Jackson, N. M. Amer, A. C. Boccara and D. Fournier, “Photothermal Deflection Spectroscopy and detection”, Appl. Optics, vol. 20 (1981) pp. 1333-1334. [95] M. Kumeda and T. Shimizu, “ESR in hydrogenated amorphous silicon”, Jap. J. Appl. Phys., vol. 19 (1980) pp. L197-L200. [96] S. R. Wenham, M. A. Green and M. E. Watt, “Applied Photovoltaics”, Centre for Photovoltaic Devices and Systems, 1996. [97] B. P. Nelson, Y. Xu, A. H. Mahan, D. L. Williamson and R. S. Crandall, “Hydrogenated Amorphous Silicon Grown by Hot-Wire CVD at Deposition Rates up to 1 µm/minute”, Mater. Res. Soc. Symp. Proc., vol. 609 (2000) p. A22.8.1. [98] A. G. Sault and D.W. Goodman, “Reactions of silane with the W(110) surface”, Surf. Sci., vol. 235 (1990) pp. 28-46. [99] S. Bauer, W. Herbst, B. Schroeder, H. Oechsner, W. Frammelsberger and H. Schade, “An Approach towards. High Efficiency Hot-wire CVD based a-Si:H PIN Solar. Cells”, Proc. 14th European Photovoltaic Solar Energy Conf., Barcelona, 1997, p. 617. [100] K. K. S. Lau, H. G. P. Lewis, S. J. Limb, M. C. Kwan and K. K. Gleason, “Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films”, Thin Solid Films, vol. 395 (2001) pp. 288-291. [101] Y. Nozaki, K. Kongo, T. Miyazaki, M. Kitazoe, K. Horii, H. Umemoto, A. Masuda and H. Matsumura, “Identification of Si and SiH in catalytic chemical vapor deposition of SiH4 by laser induced fluorescence spectroscopy”, J. Appl. Phys., Vol. 88 (2000) pp. 5437-5443. [102] Y. Nozaki, M. Kitazoe, K. Horii, H. Umemoto, A. Masuda and H. Matsumura, “Identification and gas phase kinetics of radical species in Cat-CVD processes of SiH4”, Thin Solid Films, vol. 395 (2001) pp. 47-50. [103] H. Umemoto, K. Ohara, D. Morita, Y. Nozaki, A. Masuda and H. Matsumura, “Direct detection of H atoms in the catalytic chemical vapor deposition of the SiH4/H2 system”, J. Appl. Phys., vol. 91 (2002) pp. 1650-1656. [104] H. Umemoto, Y. Nozaki, M. Kitazoe, K. Horii, K. Ohara, D. Morita, K. Uchida, Y. Ishibashi, M. Komoda, K. Kamesaki, A. Izumi, A. Masuda and H. Matsumura, “Effects of atomic hydrogen in gas phase on a-Si:H and poly-Si growth by catalytic CVD”, J. Non-Cryst. Solids, vol. 299-302 (2002) pp. 9-13. [105] M. Karasawa, A. Masuda, K. Ishibashi and H. Matsumura, “Development of Cat-CVD apparatus - a method to control wafer temperatures under thermal influence of heated catalyzer”, Thin Solid Films, vol. 395 (2001) pp. 71-74. [106] A. Heya, A. Masuda and H. Matsumura, “Low-temperature crystallization of morphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten”, Appl. Phys. Lett., vol. 74 (1999) pp. 2143-2145. [107] Shui-Yang Lien, Hsin-Yuan Mao and Dong-Sing Wuu, “Incubation effected upon of polycrystalline silicon films on glass deposited by hot-wire CVD”, Will be published in Chemical Vapor Deposition. [108] D. S. Wuu, S. Y. Lien, H. Y. Mao, B. R. Wu, I. C. Hsieh, P. C. Yao, J. H. Wang and W. C. Chen, “Growth and characterization of polycrystalline Si films prepared by hot-wire chemical vapor deposition”, Thin Solid Films, vol. 498 (2006) pp. 9-13. [109] R. W. Collins, A. S. Ferlauto, and C. R. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry”, Sol. Energ. Mat. Sol. C., vol. 78 (2003) pp. 143-180. [110] G. M. Ferreira, A. S. Ferlauto, C. Chen, R. J. Koval, J. M. Pearce, C. Ross, C. R. Wronski and R. W. Collins, “Kinetics of silicon film growth and the deposition phase diagram”, J. Non-Cryst. Solids, vol. 338-340 (2004) pp. 13-18. [111] E. V. Sauvain, U. Kroll, and A. Shah, “Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution”, J. Appl. Phys., vol. 87 (2000) pp. 3137-3142. [112] E. C. Molenbroek, A. H. Mahan and A. C. Gallagher, “Mechanisms influencing "hot-wire" deposition of hydrogenated amorphous silicon”, J. Appl. Phys., vol. 82 (1997) pp. 1909-1917 [113] A. H. Mahan, Y. Xu, B. P. Nelson, R. S. Crandall, J. D. Cohen, K. C. Palinginis and A. C. Gallagher, “Saturated defect densities of hydrogenated amorphous silicon grown by hot-wire chemical vapor deposition at rates up to 150 Å/s”, Appl. Phys. Lett., vol. 78 (2001) pp. 3788-3790. [114] V. M. K. Van and R. E. I. Schropp, “Amorphous silicon deposited by hot-wire CVD for application in dual junction solar cells”, Thin Solid Films, vol. 403-404 (2002) pp. 135-138. [115] J. K. Rath, M. Galetto, C. H. M. Werf, K. F. Feenstra, H. Meiling, M. W. M. Cleef and R. E. I. Schropp, “Hot Wire CVD: A one step process to obtain thin film polycrystalline silicon at a low temperature on cheap substrate”, Technical Digest Int. PVSC-9 Conf., Miyazaki, Japan, 1996, p.227. [116] J. K. Rath, K. F. Feenstra, D. Ruff, H. Meiling and R. E. I. Schropp, “Purely intrinsic poly-silicon films by hot wire chemical vapor deposition”, Mat. Res. Soc. Symp. Proc., vol. 452 (1996) pp. 977-981. [117] K. F. Feenstra, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition”, Ph.D. thesis, Utrecht University, 1998. [118] K. H. Jun, , J. D. Ouwens, R. E. I. Schropp, J. Y. Lee, J. H. Choi, H. S. Lee, K. S. Lim, “Low degradation and fast annealing effects of amorphous silicon multilayer processed through alternate hydrogen dilution”, Journal of Applied Physics, vol. 88(8) (2000) pp. 4881-4888. [119] R. E. I. Schropp, B. Stannowski, A. M. Brockhoff, P. A. T. T. van Veenendaal, J. K. Rath, “Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells”, Mater. Phys. Mech., vol. 1 (2000) pp. 73-82. [120] P. Müller, E. Conrad, T. R. Omstead and P. Kember, “Deposition of Poly-Si and Si-Based Dielectrics by ECRCVD. and RTCVD”, Conference Proceedings of the 13th European Photovoltaic Solar Energy Conference, 1995, p.1742. [121] C. Horbach, W. Beyer and H. Wagner, “Investigation of the precursors of a-Si:H films produced by decomposition of silane on hot tungsten surfaces”, J. Non-Cryst. Solids, vol. 137-138 (1991) pp. 661-664. [122] R. Zedlitz, F. Kessler and M Heintze, “Deposition of a-Si:H with the hot-wire technique”, J. Non-Cryst. Solids, vol. 164-166 (1993) pp. 83-86. [123] S. Bauer, B. Schröder, W. Herbst and M. Lill, “A significant step towards fabrication of high efficient, more stable a-Si:H solar cells by thermo-catalytic CVD”, Proc. of the 2nd Word Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 1998, p. 363. [124] R. O. Dusane, R. Suvarna, S. R. Dusane, V. G. Bhide and S. T. Kshirsagar, “Hydrogenated microcrystalline silicon films produced at low temperature by the hot wire deposition method”, Appl. Phys. Lett., vol. 63 (1993) pp. 2201-2203. [125] D. Han, K. Wang, J. M. Owens, L. Gedvilas, B. Nelson, H. Habuchi and M. Tanaka, “Hydrogen structures and the optoelectronic properties in transition films from amorphous to microcrystalline silicon prepared by hot-wire chemical vapor deposition”, J. Appl. Phys., vol. 93 (2003) pp. 3776-3783. [126] P. Brogueira, J. P. Conde, S. Arekat, V. Chu, “Amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition at filament temperatures between 1500 and 1900°C”, J. Appl. Phys., vol. 79 (1996) pp. 8748-8760. [127] M. Heintze, R. Zedlitz, H. N. Wanka, M. B. Schubert, “Amorphous and microcrystalline silicon by hot wire chemical vapor deposition”, J. Appl. Phys., vol. 79 (1996) pp. 2699-2706. [128] P. Alpuim, V. Chu, J. P. Conde, “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition”, J. Appl. Phys., vol. 86 (1999) pp. 3812-3821. [129] D. Peiró, “Microcrystalline silicon obtained by Hot-. Wire Chemical Vapour Deposition for photovoltaic applications”, PhD Thesis, Universitat de Barcelona, 1999. [130] R. Brüggermann, J. P. Kleider, C. Longeaud, D. Mencaraglia, J. Guillet, and C. Niikura, “Electronic properties of silicon thin films prepared by hot-wire chemical vapour deposition”, J. Non-Cryst. Solids, vol. 266-269 (2000) pp. 258-262. [131] D. Han, G. Yue, J. D. Lorentzen, J. Lin, H. Habuchi and Q. Wang, “Optical and electronic properties of microcrystalline silicon as a function of microcrystallinity”, J. Appl. Phys., vol. 87 (2000) pp. 1882-1888. [132] A. H. Mahan, J. Yang, S. Guha and D. L. Williamson, “Structural changes in a-Si:H film crystallinity with high H dilution” Phys. Rev. B, vol. 61 (2000) pp. 1677-1680. [133] J. E. Bourée, “Correlated structural and electronic properties of microcrystalline silicon films deposited at low temperature by catalytic CVD”, Thin Solid Films, vol. 395 (2001) pp. 157-162. [134] D. H. Levi, B. P. Nelson, J. D. Perkins and H. R. Moutinho, “In situ studies of the amorphous to microcrystalline transition of hot-wire chemical vapor deposition Si:H films using real-time spectroscopic ellipsometry”, J. Vac. Sci. Technol. A, vol. 21 (2003) pp. 1545-1549. [135] S. Kumar, B. Drevillon and C. Godet, “In situ spectroscopic ellipsometry study of the growth of microcrystalline silicon”, J. Appl. Phys. vol. 60 (1986) pp.1542-1544. [136] H. Matsumura, H. Umemoto, A. Izumi and A. Masuda, “Recent progress of Cat-CVD research in Japan-bridging between the first and second Cat-CVD conferences”, Thin Solid Films, vol. 430 (2003) pp. 7-14. [137] M. Zhu, X. Guo, G. Chen, H. Han, M. He and K. Sun, “Microstructures of microcrystalline silicon thin films prepared by hot wire chemical vapor deposition”, Thin Solid Films, vol. 360 (2000) pp. 205-212. [138] F. Finger, J. Muller, C. Malten, R. Carious and H. Wagner, “Electronic properties of microcrystalline silicon investigated by electron spin resonance and transport measurements”, J. Non. Cryst. Solids, vol. 266-269 (2000) pp. 511-518. [139] J. K. Rath, A. Barbon and R. E. I. Schropp, “Clustered defects in hot wire chemical vapor deposited poly-silicon films”, J. Non. Cryst. Solids, vol. 266-269 (1999) pp. 548-552. [140] J. K. Rath, “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications”, Sol. Energy Mater. Sol. Cells, vol. 76 (2003) pp. 431-487. [141] J. Muller, F. Finger, C. Malten and H. Wagner, “Photocarrier recombination in microcrystalline silicon studied by light induced electron spin resonance transients, in: Advances in microcrystalline and Nanocrystalline Semiconductors”, Materials Research Society Symp. Proc., vol. 452 (1997) pp. 827-832. [142 J. K. Rath, M. Meiling and R. E. I. Schropp, “Purely intrinsic poly-Si films for n-i-p solar cells”, Jpn. J. Appl. Phys., vol. 36 (1997) pp. 5436-5443. [143] C. H. Seager, D. J. Sharp and J. K. G. Panitz, “Passivation of grain boundaries in silicon”, J. Vac. Sci. Technol., vol. 20 (3) (1982) pp. 430-435. [144] L. L. Kazmerski and J. R. Dick, “Determination of grain boundary impurity effects in polycrystalline silicon”, J. Vac. Sci. Technol. A, vol. 2 (1984) pp. 1120-1122. [145] L. L. Kazmerski, A. J. Nelson, R. G. Dhere, A. Yahia and F. Abou-Elfotouh, “Neutralization and bonding mechanisms of shallow acceptors at grain boundaries in polycrystalline silicon”, J. Vac. Sci. Technol. A, vol. 6 (1988) pp. 1007-1011. [146] F. Liu, M. Zhu, Y. Feng, Y. Han and J. Liu, “Electrical transport properties of microcrystalline silicon thin films prepared by Cat-CVD”, Thin Solid Films vol. 395 (2001) pp. 97-100. [147] M. Komoda, K. Kamesaki, A. Masuda and H. Matsumura, “Formation of silicon films for solar cells by the Cat-CVD method”, Thin Solid Films, vol. 395 (2001) pp. 198-201. [148] M. Konagai, T. Tsushima, M. Kim, K. Asakusa, A. Yamada, Y. Kudriavtsev, A. Villegas and R. Asomoza, “High-rate deposition of silicon thin-film solar cells by the hot-wire cell method”, Thin Solid Films, 395 (2001) pp. 152-156. [149] H. Matsumura, “Summary of research in NEDO Cat-CVD project in Japan”, Thin Solid Films, vol. 395 (2001) pp. 1-11. [150] R. E. I. Schropp, P. F. A. Alkemade, J. K. Rath, “Poly-silicon films with low impurity concentration made by hot wire chemical vapour deposition”, Sol. Energy Mater. Sol. Cells, vol. 65 (2001) pp. 541-547. [151] W. E. Spear and P. G. L. Comber, Solid State Communications, vol. 17 (1975) p. 1193. [152] R. A. Street, “Hydrogenated Amorphous Silicon”, Cambridge University Press, Cambridge, 1991. [153] P. Brogueira, V. Chu, A. C. Ferro and J. P. Conde, “Doping of amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition using phosphine and trimethylboron”, J. Vac. Sci. Technol. A, vol. 15 (1997) pp. 2968-2982. [154] P. Alpuim, V. Chu and J. P. Conde, “Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition”, J. Vac. Sci. Technol., vol. 19 (2001) pp. 2328-2334. [155] J. P. Conde, P. Alpuimx, M. Boucinha, J. Gaspar And V. Chu, “Amorphous and microcrystalline silicon deposited by hot-wire chemical vapor deposition at low substrate temperatures: application to devices and thin-film microelectromechanical systems”, Thin Solid Films, vol. 395 (2001) pp. 105-111. [156] M. Fonrodona, D. Soler, J. Bertomeu and J. Andreu, “Investigations on doping of amorphous and nanocrystalline silicon films deposited by catalytic chemical vapour deposition”, Thin Solid Films, vol. 395 (2001) pp. 125-129. [157] Q. Wang, E. Iwaniczko, Y. Xu, W. Gao, B. P. Nelson, A. H. Mahan, R. S. Crandall and H. M. Branz, “Amorphous and Heterogeneous Silicon Thin Films”, Mat. Res. Soc. Symp. Proc., vol. 609 (2000) p. A4.3.1. [158] U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz and B. Schröder, “a-Si:H based solar cells entirely deposited by hot-wire CVD”, Proc. of the 16th European Photovoltaic Solar Energy Conference, Glasgow, 2000, pp. 286-291. [159] C. Mukherjee, U. Weber, H. Seitz and B. Schroder, “Growth of device quality p-type μc-Si:H films by hot-wire CVD for a-Si pin and c-Si heterojunction solar cells”, Thin Solid Films, vol. 395 (2001) pp. 310-314. [160] B. P. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S.Crandall and H. M. Branz, “High-deposition rate a-Si:H n-i-p solar cells grown by HWCVD”, Thin Solid Films, vol. 395 (2001) pp. 292-297. [161] A. H. Mahan, Y. Xu, E. Iwaniczko, D. L. Williamson, B. P. Nelson and Q. Wang, “Amorphous silicon films and solar cells deposited by HWCVD at ultra-high deposition rates”, J. Non-Cry. Solids, vol. 299-303 (2002) pp. 2-8. [162] M.
摘要: 熱燈絲化學氣相沉積技術在沉積非晶,微晶及多晶矽薄膜於太陽電池的應用是極具潛力的一種技術。以熱燈絲化學氣相沉積矽薄膜比較於電漿輔助化學氣相沉積主要的優點為:(1) 無電漿轟擊,(2) 較高沉積速率,(3) 較低設備成本以及(4) 較高的氣體使用率,但可能遇到基板溫度控制不易及燈絲老化的問題。本論文主要探討非晶、微晶及多晶矽薄膜的沉積技術,特性分析及其應用。我們研究了氫稀釋比例、基板溫度及燈絲溫度等參數在沉積矽薄膜製程中的作用,同時我們也對不同參數製備之矽薄膜微結構進行研究探討。結果顯示矽薄膜的結晶率會隨著氫氣稀釋比例,基板溫度以及燈絲溫度的增加而增加,矽膜之含氫量隨著氫氣稀釋比例和基板溫度增加而減少但隨著燈絲溫度增加而增加。 本研究對於以熱燈絲化學氣相沉積技術沉積多晶矽薄膜之成長機制做深入研究,探討影響成長機制的參數以得到矽薄膜的特性最佳化。適度的調變參數下我們可以得到由完全非晶到93 %高結晶率的矽膜微結構特性,我們也觀察在非晶及多晶的轉變過程中氫氣稀釋比例和基板溫度的影響。 本論文同時探討以熱燈絲化學氣相沉積分別通入B2H6 或 PH3 摻雜氣體沉積p型及n型微晶矽薄膜,無論p型及n型微晶矽薄膜都可以利用現行本質矽薄膜沉積參數得到,使用1 %摻雜比例沉積n型微晶矽薄膜可以得到在太陽電池應用中可接受的電氣特性(σd = 0.292 Ω-1cm-1 and EA = 0.036 eV)。此外,使用1 %摻雜比例沉積p型微晶矽薄膜也可以得到接近0.15 Ω-1cm-1低的暗電導。最後我們利用熱燈絲化學氣相沉積技術沉積寬能隙及低活化能的p型及n型微晶矽薄膜實現高效率的異質接面矽太陽電池。 以上述之矽膜材料特性應用於p型單晶矽基板之異質接面太陽電池,我們初步研究了幾種不同的元件結構及特性。適度的氫氣處理及使用緩衝層可改善n層與單晶的界面,我們探討氫氣處理時間及n層厚度對於太陽電池性能的影響。比較對於基板不同的粗化結構光粹取效果的模擬與實驗結果,及不同粗化基板之異質接面矽太陽電池的效能。在氫氣處理時間及n層厚度等參數最佳化後,我們實現了短路電流為34.6 mA/cm2、開路電壓為 0.615 V、填充因子為 0.71及 效率為15.2 %之單面異質接面太陽電池元件。同時我們也完成了短路電流為34.8 mA/cm2、開路電壓為 0.645 V、填充因子為 0.73及效率為16.4 %之雙面異質接面太陽電池元件。 我們最後利用Pc1D軟體對異質接面太陽電池元件進行模擬,我們介紹太陽電池目前較常使用的模擬軟體並討論它們的發展及限制,接著提出模擬的結果。透過模組及數值模擬,針對元件串聯電阻、基板厚度、n層厚度、n層結晶率、i層厚度及i層結晶率對於太陽電池的影響做探討並且與實驗結果做比較。此目的在於瞭解元件參數的影響及元件最佳化設計,在最佳化太陽電池設計後之模擬結果,我們得到短路電流為39.4 mA/cm2、開路電壓為 0.64 V、 填充因子為 0.83及效率為21 %之異質接面太陽電池元件。這些結果對未來以熱燈絲化學氣相沉積技術低溫製造高效率異質接面太陽電池具有正面激勵的效果。
Hot-Wire Chemical Vapor Deposition (Hot-Wire CVD) is a promising technique for deposition of amorphous, microcrystalline and polycrystalline silicon thin films for photovoltaic applications. The main advantages of Hot-Wire CVD over PE-CVD, which is currently the most widespread applied technique to deposit thin silicon films in industry, are (1) absence of ion bombardment, (2) high deposition rate, (3) low equipment cost and (4) high gas utilization. Possible issues in Hot-Wire CVD are the control of the substrate temperature and aging of the filaments. This thesis deals with the full spectrum of deposition, characterization and application of amorphous, microcrystalline and polycrystalline silicon thin films. We studied the role of the hydrogen dilution ratio (DH), the substrate temperature (Ts) and the filament temperature (Tf) on the film parameters. Microstructures of the Si films with different deposition parameters have been investigated. It was found that an enhancement of crystallization with the increase of hydrogen dilution ratio, substrate temperature and filament temperature. The hydrogen content (CH) in the film decreases with increase in hydrogen dilution ratio and substrate temperature, but CH increases with increase in filament temperature. A growth mechanism diagnosis for polycrystalline silicon deposition using Hot-Wire CVD is explored in this study. The role of the different parameters involved in the growth mechanism (filament temperature, substrate temperature and hydrogen dilution) was analyzed to optimize the properties of the deposited material. A wide range of microstructure features ranging from purely amorphous to highly crystalline (Xc > 0.93) was achieved after suitably tuning the deposition parameters. High Tf, Ts and/or DH allowed the deposition of highly crystalline material. Furthermore, an abrupt transition from a-Si to poly-Si was observed, especially when the influence of either DH or Ts were analyzed. The ability to deposit both p- and n-type uc-Si doped layers by means of Hot-Wire CVD after the addition of B2H6 and PH3 respectively was evaluated. Both n-type and p-type materials were obtained in a relatively straightforward manner, as similar conditions to those leading to our state-of-the-art intrinsic silicon films could be employed. For n-type uc-Si films, the doping ratio (Sd) of 1 % was used leading to acceptable electrical properties (σd = 0.292 Ω-1cm-1 and EA = 0.036 eV), which allowed the incorporation of this material in photovoltaic devices. In addition, the deposition of p-type uc-Si material proved low σd (~ 0.15 Ω-1cm-1) was obtained when typical doping ratios at 1 % were employed. Finally, we achieved a high efficiency of heterojunction solar cell due to the high optical band gap and low activation energy of n-type and p-type uc-Si prepared by Hot-Wire CVD. The above-mentioned results concerning material properties were applied in the deposition of our first p-type c-Si based heterojunction silicon solar cells grown by Hot-Wire CVD. These preliminary results concerned the analysis of several structures involving different device designs. The proper hydrogen pretreatment and buffer layer used in this work improves of n-layer/c-Si interface. The influences of hydrogen pre-treatment time and n-layer thickness on solar cell performance are studied. We investigated the light trapping effect of a silicon wafer with various pyramidal texture structures by simulation and experimental in this study. Ray-trace simulation in HJ silicon solar cells with various pyramidal texture structures was performed. After optimizing the deposition parameters of n-layer and the H2 pretreatment of solar cell, the single-side HJ solar cell with Jsc = 34.6 mA/cm2, Voc = 0.615 V, FF = 0.71, and efficiency of 15.1 % have been achieved. The double-side HJ solar cell with Jsc = 34.8 mA/cm2, Voc = 0.645 V, FF = 0.73, and efficiency of 16.4 % have been fabricated with optimum textured silicon substrate. The behavior of our HJ solar cells was simulated using a Pc1D simulation program. We present a selection of currently available numerical simulation tools for heterojunction silicon solar cells, and discuss their possibilities and limitations. Afterwards, some results obtained with numerical simulation will be presented. By means of modeling and numerical computer simulation, the influence of series resistance of device, substrate thickness, n-layer emitter thickness, n-layer crystallinity, i-layer thickness and i-layer crystallinity on the solar cell performance (efficiency, open-circuit voltage, short-circuit current, fill factor and internal quantum efficiency) is investigated and compared with experimental results for p-type wafer material. It is the aim of this work to improve the understanding of this device and to derive arguments for design optimization. To evaluate device properties a numerical analysis of the experimental results have been proposed and discussed. After optimizing all the simulated parameters of solar cell, the best results with Jsc = 39.4 mA/cm2, Voc = 0.64 V, FF = 83 % and efficiency = 21 % has been achieved. These are very encouraging results for future fabrication of high efficiency heterojunction solar cells at low temperature by Hot-Wire CVD.
URI: http://hdl.handle.net/11455/11157
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.