Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11159
標題: 鉻鉑底層對鐵鉑薄膜磁性與微結構之研究
Ordereing effect of CrPt underlayer on magnetic properties and microstructure of L10 FePt film
作者: 林怡君
Y.J.Lin
關鍵字: Superparamagnetism
超順磁效應
Ultra-density recording media
Domain wall pinning
超高密度記錄媒體
磁區壁栓固
出版社: 材料工程學系所
引用: [1] T. Maeda, T. Kai, A. Kikitsu, T. Nagase, Jun-ichi Akiyama, Appl. Phys. Lett. 80, 2147 (2002). [2] 楊希文,張炎輝,鐵-鉑基合金結構及其磁性探討,國立成功大學博士論文,中華民國八十二年七月。 [3] S. W. Yung, J. Magn. Magn. Mat. 116, 411 (1992). [4] B. M. Lairson, M. R. Visokay, R. Sinclair, B. M. Clemens, Appl. Phys. Lett. 62, 639 (1993). [5] M. Watanabe, JIM. 37, 489 (1996). [6] M. Watanabe, Jpn. J. Appl. Phys. 35, 1264 (1996). [7] R.F. Sabiyanov, S. S. Jaswal, J. Magn. Magn. Mater. 117-181, 989 (1998). [8] M. H. Hong, M. Watanabe, J. Appl. Phys. 84, 4403 (1998). [9] C. M. Kuo, P. C. Kuo, H. C. Wu, J. Appl. Phys. 85, 2264 (1999). [10] C. M. Kuo, P. C. Kuo, H. C. Wu, Y. D. Yao, and C. H. Lin, J. Appl. Phys. 85, 4886 (1999). [11] T. Suzuki, K. Harada, N. Honda, K. Ouchi, J. Magn. Magn. Mat. 193, 85 (1999). [12] T. Suzuki, N. Honda, K. Ouchi, J. Appl. Phys. 85, 4301 (1999). [13] T. Goto, Y. Ide, J. Magn. Magn. Mater. 198, 486 (1999). [14] C. M. Kuo and P. C. Kuo, J. Appl. Phys. 87, 419 (2000). [15] P. C. Kuo, Y. D. Yao, C. M. Kuo and H. C. Wu, J. Appl. Phys. 87, 6146 (2000). [16] S. R. Lee, S. Yang, Y. K. Kim, J. G. Na, Appl. Phys. Lett. 78, 4001 (2001). [17] S. R. Lee, S. Yang, Y. K. Kim, J. G. Na, J. Appl. Phys. 91, 6857 (2002). [18] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, and D. E. Laughlin, J. Appl. Phys. 92, 6104 (2002). [19] H. S. Ko, A. Perumal, and S. C. Shin, Appl. Phys. Lett. 82, 2311 (2003). [20] K. W. Wierman, C. L. Platt, J. K. Howard, F. E. Spada, J. Appl. Phys. 93, 7160 (2003). [21] M. F. Toney, W. Y. Lee, J. A. Hedstrom, and A. Kellock, J. Appl. Phys. 93, 9902 (2003). [22] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004). [23] A. C. Sun, P. C. Kuo, S. C. Chen, C. Y. Chou, H. L. Huang and J. H. Hsu, J. Appl. Phys. 95, 7264 (2004). [24] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys. 98, 013902 (2005). [25] K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, J.-U. Thiele, J. Appl. Phys. 98, 033904 (2005). [26] T. Suzuki, K. Ouchi, IEEE Trans. Magn. 37, 1283 (2001). [27] Z. G. Zhang, K. Kang, T. Suzuki, Appl. Phys. Lett. 83, 1785 (2003). [28] K. Kang, T. Suzuki, Z. G. Zhang, C. Papusoi, J. Appl. Phys. 95, 7273 (2004). [29] T. Suzuki, Z. Zhengang, A.K. Singh, Y. Jinhua, A. Perumal, H. Osawa, IEEE Trans. Magn. 41,555 (2005). [30] Y. N. Hsu, S. Jeong, D. E. Laughlin, D. N. Lambeth, J. Appl. Phys. 89, 7068 (2001). [31] Y. Xu, J. S. Chen, and J. P. Wang, Appl. Phys. Lett. 80, 3325 (2002). [32] J. S. Chen, B. C. Lim, J. P. Wang, Appl. Phys. Lett. 81, 1848 (2002). [33] 袁輔德,陳士堃,銅與金之頂層擴散對鐵鉑薄膜磁性質及微結構之影響,逢甲大學材料科學研究所博士論文,中華民國九十四年六月。 [34] J. L. Tsai, F. T. Yuan and S. K. Chen, J. Appl. Phys. 97, 10N122 (2005). [35] 孫安正,郭博成,黃暉理,許仁華,低序化溫度L10 FePt合金薄膜的製備及其應用於垂直磁記錄媒體之研究,國立台灣大學材料科學與工程學研究所博士論文,中華民國九十四年六月。 [36] A. C. Sun, P. C. Kuo, J. H. Hsu, H. L. Huang, J. M. Sun, J. Appl. Phys. 98, 076109 (2005). [37] A. C. Sun, J. H. Hsu, H. L. Huang, P. C. Kuo, J. Appl. Phys. 99, 08E709 (2006). [38] C. H. Lai, C. H. Yang, C. C. Chiang, T. Balaji, T. K. Tseng, Appl. Phys. Lett. 85, 4430 (2004). [39] S. C. Chen, P. C. Kuo, S. T. Kuo, A. C. Sun, C. Y. Chou, Y. H. Fang, IEEE Trans. Magn. 41, 915 (2005). [40] Y. F. Ding, J. S. Chen, E. Liu, Appl. Phys. A. 81, 1485 (2005). [41] J. Chen, S. Ishio, S. Sugawara, Thin Solid Films 246, 211 (2003). [42] Y. Zhu and J. W. Cai, Appl. Phys. Lett. 87, 032504 (2005). [43] W. K. Shen, J. H. Judy, J. P. Wang, J. Appl. Phys. 97, 10H301 (2005). [44] C. Feng, B. H. Li, G. Han, J. Teng, Y. Jiang, Q. L. Liu, G. H. Yu, Appl. Phys. Lett. 88, 232109 (2006). [45] C. Feng, B. H. Li, G. Han, J. Teng, T. Yang, Y. Jiang, G. H. Yu, Appl. Phys. A. 87, 121 (2007). [46] J. L. Tsai, C. J. Hsu, Y. H. Pai, F. S. Shieu, C. W. Hsu, S. K. Chen, W. C. Chang, IEEE Trans. Magn. 303, e258 (2006). [47] J. L. Tsai, C. J. Hsu, C. W. Hsu, S. K. Chen, W. C. Chang, J. Magn. Magn. Mater. 304, e65 (2006). [48] C. J. Hsu, J. L. Tsai, C. W. Hsu, S. K. Chen, W. C. Chang, IEEE Trans. Magn. 42, 2900 (2006). [49] T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara, Y. K. Takahashi, K. Hono, J. Appl. Phys. 96, 1127 (2004). [50] C. C. Chiang, C. H. Lai, Y. C. Wu, Appl. Phys. Lett. 88, 152508 (2006). [51] J. Cao, J. Cai, Yan Liu, Z. Yang, F. Wei, A. Xia, B. Han, J. Bai, J. Appl. Phys. 99, 08F901 (2006). [52] B. Dai, J. W. Cai, W. Y. Lai, Y. K. An, Z. H. Mai, F. Shen, Y. Z. Liu, Z. Zhang, Appl. Phys. Lett. 87, 092506 (2005). [53] J. Cho, M. park, H. S. Kim, T. Kato, S. lwata, S. Tsunashima, J. Appl. Phys. 86, 3149 (1999). [54] Thaddeus B. Massalski. et.”Binary Alloy Phase Diagrams”, vol. 2. ASM International, second printing (1990). [55] H. Okamoto, “Binary Alloy Phase Diagrams”, vol. 2, ASM International, 2nd edition (1992). [56] P. Villas, L. D. Calvert, “Binary Alloy Phase Diagrams”, vol. 1, American Society For Metals, second printing (1987). [57] G. C. Kuczynski, R. F. Hochman, M. Doyama, “Study of the Kinetics of Ordering in the Alloy AuCu”, J. Appl. Phys. 26, 871 (1955). [58] M. Hirabayashi, Acta Met. 10, p.25 (1962). [59] G. Birelus: J. Inst. Met. 74, p.17 (1948). [60] Y. K. Takahashi, K. Hono, Scripta Materialia, 53, 403 (2005). [61] L. C. Cullity, “Introduction to magnetic materials”, Addision-Wesley publishing Company, p.332 (1972). [62] G. C. Hadjipanayais, J. Appl. Phys. 63, 965 (1976). [63] S. M. Rossnagel et al., “ Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U. S. A (1982). [64] Brian Campman,“Plasma”, Glow Discharge Process, (John Wiley & Sons, New York, U.S.A. Chap3 (1980). [65] M. K. Lee and H. S. Kang. Journal of Material Research. 12, 9, pp. 1400-2393 (2000). [66] John L. Vossen and Werner Kerm, “Thin Film Process”, Academic Process, pp. 134 (1999). [67] R. F. Bunshah, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U.S.A. (1982). [68] J. Venables,“Nucleation and Growth of Thin Films”, Rep. Prog. Phys. 47, 399 (1984). [69] 吳政杰,李世欽,ZnO-ITO導電薄膜之研究,國立成功大學碩士論文,中華民國九十三年六月。 [70] K. R. Coffey, M. A. Parker, J. K. Howard, IEEE Trans. Magn. 31, 2737 (1995). [71] S. Y. Bae, K. H. Shin, J. Y. Jeong, J. G. Kim, J. Appl. Phys. 87, 6953 (2000). [72] A. Z. Men’shikov, V. A. K. Yu. A. Dorofeyev, S. K. Sidorov, Fiz. Met. Metalloved. 38, 505 (1974). [73] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,國科會精儀中心發行,第十三章,民國八十二年。 [74] 蕭欣欣,金重勳,濺鍍參數與第三元素對FePt薄膜磁性質之影響,國立清華大學碩士論文,中華民國八十九年六月。 [75] B. D. Cullity, “Elements of X-ray Diffraction (Addision Wesley, Reading, MA,), 102 (1978). [76] H. S. Nalwa, “Magnetic Nanostructures”. California, USA. [77] E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958). [78] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, S. Hom, G. R. Harp, A. Cebollada, Appl. Phys. Lett. 69, 1166 (1996). [79] JCPDS card, Card No. 34-0707. [80] T. Kato, H. Ito, K. Sugihara, S. Tsunashima, S. Iwata, J. Magn. Magn. Mater. 272- 276, 778 (2004). [81] J. Cho, M. park, H. S. Kim, T. Kato, S. lwata, S. Tsunashima, J. Appl. Phys. 86, 3149 (1999).
摘要: 本實驗為了降低FePt薄膜的序化溫度及提升FePt的序化程度,故研究底層對FePt薄膜磁性質與結構的影響,我們以磁控濺鍍法製備FePt薄膜及FePt/(Cr, CrPt, CrPt3)雙層薄膜並改變熱處理溫度沉積於石英基板上,試片則利用TEM, XRD, VSM進行分析。 FePt(60 nm)/Cr(20-120 nm)雙層薄膜經400℃後退火,發現測得之磁滯曲線都有雙肩現象,推測其可能是Cr與FePt層間有交互擴散的情形。 CrPt(120 nm)底層經熱處理溫度25-800℃持溫一小時之後再沉積FePt薄膜,我們發現,當CrPt加熱至400℃以上時會從A1-type相轉變成L10-type,且熱處理溫度達800℃時幾乎完全序化。除此之外,FePt薄膜之矯頑磁力隨著CrPt底層熱處理溫度的上升從3.5 kOe增加至9.6 kOe。因此,我們推測FePt薄膜序化度會隨著CrPt底層序化度的上升而增加,也進一步改善FePt的矯頑磁力。 FePt/CrPt3雙層薄膜,CrPt3底層先經25-800℃熱處理之後鍍上FePt薄膜。當熱處理溫度達600℃以上時,CrPt3薄膜會從A1-type相轉變成L12-type,且其序化度隨熱處理溫度增加亦隨著上升。於FePt/CrPt3雙層薄膜的系列中,發現隨著CrPt3底層熱處理溫度的增加,FePt薄膜之矯頑磁力由8.0 kOe增加至11.0 kOe。在比較CrPt3底層與CrPt底層系列後,發現CrPt3底層能更有效地提升FePt薄膜之矯頑磁力。 另一方面,CrPt與CrPt3底層加熱至800℃並持溫半小時並疊上FePt(60 nm)經350℃後退火持溫一小時,此兩種底層的矯頑磁力皆達5 kOe左右,表示CrPt與CrPt3底層皆可有效地將FePt的序化溫度降低50℃。
The effects of Cr, CrPt as well as CrPt3 underlayer on magnetic properties and microstructure of FePt film were investigated for lowering ordering temperature of FePt film and enhancing the degree of A1 to L10 chemical order. FePt/(Cr, CrPt, CrPt3) bilayer films were deposited on quartz sunstrates by RF magnetron sputtering with different thermal treatment, and the characteristics of samples were analyzed using TEM, XRD and VSM. In the case of (FePt 60 nm/Cr x nm; x=20-120 nm) bilayer structure films annealed at 400oC, the samples exhibit two steps hysteresis loops as presumable results of interdiffusion between Cr and FePt layers. CrPt underlayer, with 120 nm in thickness, was in-situ annealed at RT-800oC for half hour prior to depositing FePt film, it is found that the phase of CrPt film transforms from A1 to L10 above 400oC and is fully ordered at 800oC. Besides, the coercivity of 60 nm FePt film post-annealing at 400oC for 1 hr increases from 3.5 to 9.6 kOe with increasing annealing temperature of CrPt underlayer. Therefore, we speculate that the increasing order parameter of CrPt underlayer enhance the order parameter of FePt film, and further improve the coercivity of FePt film. CrPt3 underlayer with 120 nm in thickness was in-situ annealed at RT-800oC for half hour prior to depositing FePt film, and the A1→L12 ordering of CrPt3 films occurs as annealing above 600oC. The coercivity of 60 nm FePt film post-annealing at 400oC for 1 hr increases from 8.0 to 11.0 kOe with increasing annealing temperature of CrPt3 underlayer. Compared with CrPt underlayer series, CrPt3 underlayer enhances the coercivity of FePt film more effectively. On the other hand, the coercivity of FePt film post-annealing at 350oC for 1 hr is about 5 kOe with CrPt as well as CrPt3 underlayer in-situ annealed at 800oC for half hour. Hence, both the introducing of CrPt and CrPt3 underlayers effectively lower the ordering temperature of FePt film by 50oC.
URI: http://hdl.handle.net/11455/11159
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.