Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11185
標題: 製作尺度可控之氮化銦鎵奈米柱結構
Fabricated the Size-Controllable InGaN-based Nanorod Structures
作者: 謝秉承
Hsieh, Pin-Cheng
關鍵字: 氮化鎵
GaN
奈米柱
nanorod
出版社: 材料工程學系所
引用: [1] G. Fasol: Science 272, 1751(1996) [2] F. A. Ponce and D. P. Bour: Nature 386, 351(1997) [3] A. P. Alivisatos: Science 271, 933(1996) [4] Horng-Shyang Chen, Dong-Ming Yeh, Yen-Cheng Lu, Cheng-Yen Chen, Chi-Feng Huang, Tsung-Yi Tang, C CYang, Cen-Shawn Wu and Chii-Dong Chen, ”Strain relaxation and quantum confinement in InGaN/GaN nanoposts”, Nanotechnology.17, 1454-1458(2006) [5] Yuanping Sun and Yong-Hoon Choa, ”High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays”, Appl. Phys. Lett.87, 093115(2005) [6] Hung-Wen Huang, Chih-Chiang Kao, Tao-Hung Hsueh, Chang-Chin Yu, Chia-Feng Lin,Jung-Tang Chu, Hao-Chung Kuo, Shing-Chung Wang, Materials Science and Engineering .B 113, 125-129(2004) [7] Chang-Chin YU, Chen-Fu CHU, Juen-Yen TSAI, Hung Wen HUANG, Tao-Hung HSUEH,Chia-Feng LIN and Shing-Chung WANG, Jpn. J. Appl. Phys.41, L 910-L 912(2002) [8] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, and R. W. Martin: IEEE Photonic Tech. L. 15, 510(2003) [9] Ya-Hsien CHANG, Tau-Hung HSUEH, Fang-I LAI, Chun-Wei CHANG, Chang-Chin YU, Hung-Wen HUANG, Chia-Feng LIN, Hao-Chung KUO and Shing-Chung WANG, ”Fabrication and Micro-Photoluminescence Investigation of Mg-Doped Gallium Nitride Nanorods” , Jpn. J. Appl. Phys.44, 2657-2660(2005) [10] Hung-Wen Huang, Chih-Chiang Kao, Tao-Hung Hsueha, Chang-Chin Yu, Chia-Feng Lin, Jung-Tang Chu, Hao-Chung Kuo, Shing-Chung Wang ”Fabrication of GaN-based nanorod light emitting diodes using self-assemble nickel nano-mask and inductively coupled plasma reactive ion etching”, Materials Science and Engineering B 113, 125-129(2004) [11] Chang-Chin YU, Chen-Fu CHU, Juen-Yen TSAI, Hung Wen HUANG, Tao-Hung HSUEH, Chia-Feng LIN and Shing-Chung WANG, ”Gallium Nitride Nanorods Fabricated by Inductively Coupled Plasma Reactive Ion Etching”,Jpn. J. Appl. Phys.41, L910-L912 (2002) [12] B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, Appl. Phys. Lett.75, 962 (1999) [13] K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 76, 3212(2000) [14] T H Hsueh,Nanotechnology16, 448-450(2005) [15] L. W. Tu, C. L. Hsiao, T. W. Chi, and I. Lo, Appl. Phys. Lett.82, 1601(2003) [16] Y. S. Park, C. M. Park, D. J. Fu, and T. W. Kang, J. E. OhAppl. Phys. 85, 5718(2004) [17] Chia-Feng Lin, Jing-Jie Dai, Zhong-Jie Yang, Jing-Hui Zheng, and Shou-Yi Chang, Electrochemical and Solid-State Letters,8 , 12(2005) [18] M. W. Lee, H. Z. Twu, C.-C. Chen, and C.-H. Chen: Appl. Phys. Lett.79, 3693(2001) [19] Hwa-Mok Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Yong-Hoon Cho, and K. S. Chung: Appl. Phys. Lett.81, 2193(2002) [20] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang,J. K. Ho, C. C.Chiu, and C. Y. Chen , Appl. Phys. Lett.76, 511(2000) [21] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V.Schwegler, C. Kirchner, M. Kamp, and M. Heuken, Appl. Phys. Lett. 76, 3923(2000) [22] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C.J. Yoon, and H.J. Lee, Appl. Phys. Lett. 81, 1029(2002) [22] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C.J. Yoon, and H.J. Lee, Appl. Phys. Lett. 81, 1029(2002) [23] D. A. Stocker, E. F. Schubert, and J. M. Redwing , Appl. Phys. Lett. 73, 2654(1998) [24] D. A. Stocker, I. D.Goepfer, E. F. Schubert, K. S. Boutros, and J. M.Redwing , Journal of Electrochemical Society, 147(2), 763-764(2000) [25] Horng-Shyang Chen, Dong-Ming Yeh, Yen-Cheng Lu,Cheng-YenChen, Hi-Feng Huang, Tsung-Yi Tang, C CYang,Cen-Shawn Wu, and Chii-Dong Chen , Nanotechnology 17, 1454-1458(2006) [26] R. Steffen, Th. Koch, J. Oshinowo, F. Faller, and A. Forchel: Appl. Phys. Lett. 68, 223(1996) [27] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh: Appl. Phys. Lett.83, 4719(2003) [28] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P.DenBaars, and E. L. Hu, Appl. Phys. Lett.85, 762(2004) [29] M. S. Minsky, M. White, and E. L. Hu,” Room-temperature photoenhanced wet etching of GaN ”Appl.Phys.Lett.68, 1531(1996) [30] C. Youtsey and I. Adesida, and G. Bulman,” Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett.71, 2151(1997) [31] C. Youtsey, L. T. Romano, and I. Adesida” Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations”, Appl. Phys. Lett.73 ,797(1998) [32] J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc,” Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett.77, 1227(2000) [33] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh, Appl. Phys. Lett.83, 4719(2003) [34] Hwa-Mok Kim, Yong-Hoon Cho, Hosang Lee, Suk Il Kim, Sung Ryong Ryu, Deuk Young Kim,Tae Won Kang, and Kwan Soo Chung, NANO Lett. 4, p.1059~1062(2004) [35] E. H. NICOLLIAN, J. R. BREWS, ”MOS (Metal Oxide Semiconductor) Physics and Technology, p.738~p.742 [36] S. D. Wolter, B. P. Luther, D. L. Waltemyer, C. Önneby, and S. E.Mohney, R. J. Molnar, Appl. Phys. Lett.70, p.2156(1997)
摘要: 本實驗針對可控尺度之氮化銦鎵/氮化鎵多重量子井的奈米柱發光元件結構進行研究,採用TiO2 奈米球與熱叢聚鎳金屬球作為電漿蝕刻遮罩,製作含有氮化銦鎵發光二極體結構的奈米柱,利用光輔助電化學選擇性氧化結合鹽酸和熱氫氧化鉀溶液之濕式蝕刻,與能帶選擇性光輔助電化學蝕刻的技術,將奈米柱的氮化銦鎵多重量子井層和N型氮化鎵表面氧化蝕刻達到更小尺度之奈米柱結構,以期將奈米柱的尺度縮的更小,以達到三維侷限之氮化銦鎵量子盤結構。 利用光學顯微鏡及場發掃描電子顯微鏡觀察其表面和奈米柱型態,原子力顯微鏡觀察表面密度,探討選擇性氧化、濕式蝕刻、能帶選擇性蝕刻的機制和表面型態。並利用顯微光激螢光光譜、隨激發光功率變化顯微螢光光譜,探討經光輔助電化學技術製作縮小尺度的釘狀奈米柱結構中氮化銦鎵/氮化鎵多重量子井活性層之光學特性。比較光輔助電化學的處理前後,光譜有藍移的現象發生,主要為應變釋放所造成,能帶傾斜改變所造成,隨尺寸縮小之奈米柱結構具有減小壓電場、提升量子侷限效應並提升發光元件之內部量子效率。並探討利用光輔助電化學技術所形成之氧化鎵絕緣層製作奈米柱與陣列型發光二極體之可行性。
We report a novel method to fabricate controllable dimension and density of GaN-based nanorod by varying Ni-mask and TiO2 nono- particle layer thickness using ICP-RIE etching. The nanorod surface morphology and structure are observed through the Optical microscope (OM) and field-effect scanning electron microscope (SEM) ,and the surface density is analyzed through AFM. We can discuss the machine of the selective oxidation、wet etching and selective-band etching process. The diameter of the InGaN/GaN MQW active layer in nanorod structure was reduced by using PEC oxidation and bandgap-selective PEC etching process. After reducing the diameter of the rod-LED structure, the PL emission peak of the InGaN/GaN MQW layer has the blue shift property caused by the partial compress strain release of InGaN layer and quantum confinement effect in this nano-disk active layer. This result provides some useful information for future III-nitride nano size optical devices, and has the potential for optoelectronic device application. Micro Disk Array LEDs with Ga2O3 insulated layer was also study in this experiment.
URI: http://hdl.handle.net/11455/11185
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.