Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11185
DC FieldValueLanguage
dc.contributor林泰源zh_TW
dc.contributorT. Y. Linen_US
dc.contributor林得裕zh_TW
dc.contributor盧廷昌zh_TW
dc.contributorD. Y. Linen_US
dc.contributorTien-Chang Luen_US
dc.contributor.advisor林佳鋒zh_TW
dc.contributor.advisorChia-Feng Linen_US
dc.contributor.author謝秉承zh_TW
dc.contributor.authorHsieh, Pin-Chengen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:47:11Z-
dc.date.available2014-06-06T06:47:11Z-
dc.identifier.citation[1] G. Fasol: Science 272, 1751(1996) [2] F. A. Ponce and D. P. Bour: Nature 386, 351(1997) [3] A. P. Alivisatos: Science 271, 933(1996) [4] Horng-Shyang Chen, Dong-Ming Yeh, Yen-Cheng Lu, Cheng-Yen Chen, Chi-Feng Huang, Tsung-Yi Tang, C CYang, Cen-Shawn Wu and Chii-Dong Chen, ”Strain relaxation and quantum confinement in InGaN/GaN nanoposts”, Nanotechnology.17, 1454-1458(2006) [5] Yuanping Sun and Yong-Hoon Choa, ”High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays”, Appl. Phys. Lett.87, 093115(2005) [6] Hung-Wen Huang, Chih-Chiang Kao, Tao-Hung Hsueh, Chang-Chin Yu, Chia-Feng Lin,Jung-Tang Chu, Hao-Chung Kuo, Shing-Chung Wang, Materials Science and Engineering .B 113, 125-129(2004) [7] Chang-Chin YU, Chen-Fu CHU, Juen-Yen TSAI, Hung Wen HUANG, Tao-Hung HSUEH,Chia-Feng LIN and Shing-Chung WANG, Jpn. J. Appl. Phys.41, L 910-L 912(2002) [8] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, and R. W. Martin: IEEE Photonic Tech. L. 15, 510(2003) [9] Ya-Hsien CHANG, Tau-Hung HSUEH, Fang-I LAI, Chun-Wei CHANG, Chang-Chin YU, Hung-Wen HUANG, Chia-Feng LIN, Hao-Chung KUO and Shing-Chung WANG, ”Fabrication and Micro-Photoluminescence Investigation of Mg-Doped Gallium Nitride Nanorods” , Jpn. J. Appl. Phys.44, 2657-2660(2005) [10] Hung-Wen Huang, Chih-Chiang Kao, Tao-Hung Hsueha, Chang-Chin Yu, Chia-Feng Lin, Jung-Tang Chu, Hao-Chung Kuo, Shing-Chung Wang ”Fabrication of GaN-based nanorod light emitting diodes using self-assemble nickel nano-mask and inductively coupled plasma reactive ion etching”, Materials Science and Engineering B 113, 125-129(2004) [11] Chang-Chin YU, Chen-Fu CHU, Juen-Yen TSAI, Hung Wen HUANG, Tao-Hung HSUEH, Chia-Feng LIN and Shing-Chung WANG, ”Gallium Nitride Nanorods Fabricated by Inductively Coupled Plasma Reactive Ion Etching”,Jpn. J. Appl. Phys.41, L910-L912 (2002) [12] B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, Appl. Phys. Lett.75, 962 (1999) [13] K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 76, 3212(2000) [14] T H Hsueh,Nanotechnology16, 448-450(2005) [15] L. W. Tu, C. L. Hsiao, T. W. Chi, and I. Lo, Appl. Phys. Lett.82, 1601(2003) [16] Y. S. Park, C. M. Park, D. J. Fu, and T. W. Kang, J. E. OhAppl. Phys. 85, 5718(2004) [17] Chia-Feng Lin, Jing-Jie Dai, Zhong-Jie Yang, Jing-Hui Zheng, and Shou-Yi Chang, Electrochemical and Solid-State Letters,8 , 12(2005) [18] M. W. Lee, H. Z. Twu, C.-C. Chen, and C.-H. Chen: Appl. Phys. Lett.79, 3693(2001) [19] Hwa-Mok Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Yong-Hoon Cho, and K. S. Chung: Appl. Phys. Lett.81, 2193(2002) [20] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang,J. K. Ho, C. C.Chiu, and C. Y. Chen , Appl. Phys. Lett.76, 511(2000) [21] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V.Schwegler, C. Kirchner, M. Kamp, and M. Heuken, Appl. Phys. Lett. 76, 3923(2000) [22] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C.J. Yoon, and H.J. Lee, Appl. Phys. Lett. 81, 1029(2002) [22] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C.J. Yoon, and H.J. Lee, Appl. Phys. Lett. 81, 1029(2002) [23] D. A. Stocker, E. F. Schubert, and J. M. Redwing , Appl. Phys. Lett. 73, 2654(1998) [24] D. A. Stocker, I. D.Goepfer, E. F. Schubert, K. S. Boutros, and J. M.Redwing , Journal of Electrochemical Society, 147(2), 763-764(2000) [25] Horng-Shyang Chen, Dong-Ming Yeh, Yen-Cheng Lu,Cheng-YenChen, Hi-Feng Huang, Tsung-Yi Tang, C CYang,Cen-Shawn Wu, and Chii-Dong Chen , Nanotechnology 17, 1454-1458(2006) [26] R. Steffen, Th. Koch, J. Oshinowo, F. Faller, and A. Forchel: Appl. Phys. Lett. 68, 223(1996) [27] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh: Appl. Phys. Lett.83, 4719(2003) [28] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P.DenBaars, and E. L. Hu, Appl. Phys. Lett.85, 762(2004) [29] M. S. Minsky, M. White, and E. L. Hu,” Room-temperature photoenhanced wet etching of GaN ”Appl.Phys.Lett.68, 1531(1996) [30] C. Youtsey and I. Adesida, and G. Bulman,” Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett.71, 2151(1997) [31] C. Youtsey, L. T. Romano, and I. Adesida” Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations”, Appl. Phys. Lett.73 ,797(1998) [32] J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc,” Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett.77, 1227(2000) [33] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh, Appl. Phys. Lett.83, 4719(2003) [34] Hwa-Mok Kim, Yong-Hoon Cho, Hosang Lee, Suk Il Kim, Sung Ryong Ryu, Deuk Young Kim,Tae Won Kang, and Kwan Soo Chung, NANO Lett. 4, p.1059~1062(2004) [35] E. H. NICOLLIAN, J. R. BREWS, ”MOS (Metal Oxide Semiconductor) Physics and Technology, p.738~p.742 [36] S. D. Wolter, B. P. Luther, D. L. Waltemyer, C. Önneby, and S. E.Mohney, R. J. Molnar, Appl. Phys. Lett.70, p.2156(1997)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/11185-
dc.description.abstract本實驗針對可控尺度之氮化銦鎵/氮化鎵多重量子井的奈米柱發光元件結構進行研究,採用TiO2 奈米球與熱叢聚鎳金屬球作為電漿蝕刻遮罩,製作含有氮化銦鎵發光二極體結構的奈米柱,利用光輔助電化學選擇性氧化結合鹽酸和熱氫氧化鉀溶液之濕式蝕刻,與能帶選擇性光輔助電化學蝕刻的技術,將奈米柱的氮化銦鎵多重量子井層和N型氮化鎵表面氧化蝕刻達到更小尺度之奈米柱結構,以期將奈米柱的尺度縮的更小,以達到三維侷限之氮化銦鎵量子盤結構。 利用光學顯微鏡及場發掃描電子顯微鏡觀察其表面和奈米柱型態,原子力顯微鏡觀察表面密度,探討選擇性氧化、濕式蝕刻、能帶選擇性蝕刻的機制和表面型態。並利用顯微光激螢光光譜、隨激發光功率變化顯微螢光光譜,探討經光輔助電化學技術製作縮小尺度的釘狀奈米柱結構中氮化銦鎵/氮化鎵多重量子井活性層之光學特性。比較光輔助電化學的處理前後,光譜有藍移的現象發生,主要為應變釋放所造成,能帶傾斜改變所造成,隨尺寸縮小之奈米柱結構具有減小壓電場、提升量子侷限效應並提升發光元件之內部量子效率。並探討利用光輔助電化學技術所形成之氧化鎵絕緣層製作奈米柱與陣列型發光二極體之可行性。zh_TW
dc.description.abstractWe report a novel method to fabricate controllable dimension and density of GaN-based nanorod by varying Ni-mask and TiO2 nono- particle layer thickness using ICP-RIE etching. The nanorod surface morphology and structure are observed through the Optical microscope (OM) and field-effect scanning electron microscope (SEM) ,and the surface density is analyzed through AFM. We can discuss the machine of the selective oxidation、wet etching and selective-band etching process. The diameter of the InGaN/GaN MQW active layer in nanorod structure was reduced by using PEC oxidation and bandgap-selective PEC etching process. After reducing the diameter of the rod-LED structure, the PL emission peak of the InGaN/GaN MQW layer has the blue shift property caused by the partial compress strain release of InGaN layer and quantum confinement effect in this nano-disk active layer. This result provides some useful information for future III-nitride nano size optical devices, and has the potential for optoelectronic device application. Micro Disk Array LEDs with Ga2O3 insulated layer was also study in this experiment.zh_TW
dc.description.tableofcontents中文摘要 i Abstract ii 章節目錄 iii 圖目錄 v 第一章 序論 1 1-1 前言 1 1-2 半導體奈米材料的特性 1 1-3 研究動機 3 第二章 原理與文獻回顧 5 2.1 奈米結構 5 2.2 光輔助電化學氧化法 8 2.3 乾式蝕刻 - 感應耦合式電漿蝕刻 11 2.4化學濕式蝕刻原理 12 2.5 氮化鎵與蝕刻溶液的關係 13 第三章 實驗方法與步驟 14 3.1 奈米柱試片製備 14 3.1.1 低密度奈米柱(TiO2 nano-mask) 14 3.1.2 高密度奈米柱(Ni nano-mask) 14 3.2 光輔助電化學(PEC)實驗裝置 18 3.2.1製具ㄧ 18 3.2.2 製具二 19 3.3 濕式化學蝕刻 20 3.4分析儀器 20 3.4.1 場發射掃描式電子顯微鏡(Field Emission Scanning Elctron 20 Microscope, FE-SEM) 20 3.4.2 原子力顯微鏡(AFM) 21 3.4.3 測厚儀(Alpha step, α-step) 21 3.4.4 顯微光激螢光系統(Micro PL Spectrum) 21 3-4-5 電激發螢光光譜(Electroluminescence, EL) 22 3-4-6 光學顯微鏡(Optical microscope, OM) 22 第四章 結果與討論 23 4.1 低密度奈米柱 23 4.1.1 光輔助電化學對奈米柱的影響(採用製具一) 23 4.1.2探討濕式蝕刻去除氧化鎵後奈米柱的形態 23 4.1.3探討直接利用濕式蝕刻的奈米柱型態 24 4.1.4 釘子狀奈米柱結構(nail-structure nanorods)的形成方式 30 4.1.5顯微光激螢光光譜(Micro PL Spectrum) 33 4.2 高密度奈米柱 36 4.2.1光輔助電化學對奈米柱的影響(採用製具一) 36 4.2.2顯微光激螢光光譜(Micro PL Spectrum) 36 4.2.3隨激發光功率變化顯微螢光光譜(Power-depend PL Spectrum) 37 4.2.4光輔助電化學對奈米柱的影響(採用製具二) 40 4.2.5釘子狀奈米柱結構(nail-structure nanorods)的形成方式 41 4.2.6顯微光激螢光光譜(Micro PL Spectrum) 46 4.2.7. 光輔助電化學(氧化)、(蝕刻)技術對高密度奈米柱的影響(綜合整理) 48 4.3 自製中密度奈米柱 51 4.3.1試片製備及實驗過程 51 4.3.2光輔助電化學對自製中密度奈米柱的影響(採用製具一) 51 4.3.3顯微光激螢光光譜(Micro PL Spectrum) 54 4.3.4隨激發光功率變化共焦顯微螢光光譜(Power-depend Micro PL Spectrm) 55 4.3.5藉由化學濕蝕刻時間,控制奈米柱尺寸最佳化表現 56 4.4陣列式微米盤元件之電激發光研究 58 4.4.1 研究動機 58 4.4.2利用氧化鎵進行陣列型發光二極體跨接元件製作 58 4.4.3元件電激發結果分析 59 4.4.4 氧化鎵絕緣性探討 63 4.4.5電激發光量測及表面型態 63 4.4.6 電激光光譜分析 63 第五章 結論與未來展望 68 5.1結論 68 5.2未來展望 69 參考文獻 70zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料工程學系所zh_TW
dc.subject氮化鎵zh_TW
dc.subjectGaNen_US
dc.subject奈米柱zh_TW
dc.subjectnanoroden_US
dc.title製作尺度可控之氮化銦鎵奈米柱結構zh_TW
dc.titleFabricated the Size-Controllable InGaN-based Nanorod Structuresen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.