Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11188
標題: 氮化鎵奈米多孔隙結構之光電特性研究
Optical and Electrical Properties of GaN-based Nanoporous Structures
作者: 張政謙
Chang, Cheng-Chian
關鍵字: 氮化鎵
GaN
奈米孔隙
壓電場
光輔助電化學
nanoporous
piezo
出版社: 材料工程學系所
引用: [1] G. Fasol: Science 272, 1751(1996) [2] F. A. Ponce and D. P. Bour: Nature 386, 351(1997) [3] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang,a) K. Y. Lim, C. J. Yoon, and H. J. Lee, Appl. Phys. Lett. Vol. 81, No. 6, 5 ,1029,(2002). [4] T. Rotter,a) D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, and J. Graul Appl. Phys. Lett., Vol. 76, No. 26, 26 June ,3923 ,(2000) [5] Dejum Fu, Shavakat U. Yuldashev, Nam Hwa Kim , JJAP , Vol.40 ,L11(2000) Pt. 2 , No. 1 A/B [6] L-H. Peng, C.-H. Liao, and Y.-C. Hsu Appl. Phys. Lett., Vol. 76, No. 4, 24 ,511( 2000) [7] Yoshitaka Nakanoa and Tetsu Kachi, Appl. Phys. Lett., Vol. 82, No. 15, 14, 2443,(2003) [8] D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, and J. S. Yun, 1310 Appl. Phys. Lett., Vol. 78, No. 9, 26 February 2001 [9] C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, E. S. Lambers, and J. C. Zolper, J. Vac. Sci. Technol. B 14, 3523 (1996) [10] C. R. Eddy, Jr. and B. Molnar, J. Electron. Mater. 28, 314 (1999). [11] R. J. Shul, J. C. Zolper, M. Hagerott Crawford, R. J. Hickman, R. D.Briggs, S. J. Pearton, J. W. Lee, R. F. Karlicek, Jr., C. Tran, M. Schurman, C. Constantine, and C. Barratt, Proceeding of High Speed III- V Electronics for Wireless Applications/State of the Art Program on Compound Semiconductor (SOTAPOCS) XXV, San Antonio, TX, 6-11 October(1996)(Electrochemical Society, Pennington, NJ, 1996), p.232. [12] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, J. Appl. Phys. 93 , 9383 (2003). [13] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K.Sheu, and C. T. Lee, IEEE Photonics Technol. Lett. 16, 1447 (2004). [14] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, Jpn. J. Appl. Phys., Part 1 43, 637 (2004). [15] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004). [15] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004). [16] Lun Daia and Bei Zhang , J. Appl. Phys. 89 , 4951 (2001). [17] Ya-Hsien Chang, Tau-Hung Hsueh, Fang-I Lai, Chun-Wei Chang, Chang-Chin Yu, Hung-Wen Huang, Chia-Feng Lin, Hao-Chung Kuo and Shing-Chung Wang , Jpn. J. Appl. Phys., Part 1 44, 2657 (2004). [18] Jianping Zhang, J. Yang, G. Simin, M. Shatalov, and M. Asif Khan, Appl. Phys. Lett. 84, 855 (2004). [19] M. Mynbaeva, A. Titkov, A. Kryganovskii, V. Ratnikov, K. Mynbaev, H. Huhtinen, R. Laiho, and V. Dmitriev, Appl. Phys. Lett. 76, 1113 (2000). [20] M. Ferhat and F. Bechstedt: Phys. Rev. B 65, 075213 (2002) [21] Kittel: Introduction to Solid State Physics [22] L. Macht, P. R. Hageman, S. Haffouz, and P. K. Larsen , Appl. Phys. Lett. 87, 131904(2005). [23] Su-Huai Wei: NCPV and Dolar Program Review Meeting 2003, p.713 [24] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Appl. Phys. Lett. 73, 1691(1998) [25] Piotr Perlin, Christian Kisielowski, Valentin Iota, B. A. Weinstein, Laila Mattos, Noad A. Shapiro, Joachim Kruger, Eicke R. Weber, and Jinwei Yang: Appl. Phys. Lett. 73, 2778(1998) [26] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh , Appl. Phys. Lett. 83, 4791(2003) [27] Fabio Bernardini and Vincenzo Fiorentini: Phys. Rev. B 57, R9427 (1998) [23] Su-Huai Wei: NCPV and Dolar Program Review Meeting 2003, p.713 [28] Hadis Morkoç: Nitride Semiconductors and Devices [29] Philippe Riblet, Hideki Hirayama, Atsuhiro Kinoshita, Akira Hirata, Takuo Sugano, and Yoshinobu Aoyagi: Appl. Phys. Lett. 75, 2241(1999) [30] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars: Appl. Phys. Lett. 73, 2006(1998) [31] E. Berkowicz, D. Gershoni, G. Bahir, A.C. Abare, S.P. DenBaars, and L.A. Coldren: phys. stat. sol. (b) 216,291(1999) [32] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki: Jpn. J. Appl. Phys. 36, L382, (1997) [33] Yong-Hwan Kwon, G. H. Gainer, S. Bidnyk, Y. H. Cho, J. J. Song, M. Hansen, and S. P. DenBaars: MRS Internet Journal Nitride Semiconductor Research 5S1, W12.7(2000) [34] T. M. Hsu, C. Y. Lai, W.-H. Chang, C.-C Pan, C.-C. Chuo, and J.-I. Chyi: Appl. Phys. Lett. 84, 1114 (2003). [35] C. Y. Lai, T. M. Hsu, W.-H. Chang, K.-U. Tseng, C.-M. Lee, C.-C. Chuo, and J.-I. Chyi: Appl. Phys. Lett. 91, 531 (2001). [36] M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Brückner, and F. Scholz: Appl. Phys. Lett. 89, 242112 (2006). [37] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1984). [38] A. P. Vajpeyi, S. J. Chua, S. Tripathy, E. A. Fitzgerald, W. Liu, P. Chen, and L. S. Wang, Electrochem. Solid-State Lett. 8, G85 (2005). [39] Lun Dai, Bei Zhang, J. Y. Lin, and H. X. Jiang: J. Appl. Phys. 89, 4591(2002) [40] Chia-Feng Lin, Jing-Hui Zheng , Zhong-Jie Yang, and Jing-Jie Dai: Appl. Phys. Lett. 88, 083121 (2006) [41] E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, G. Simin and M. Asif Khan: Appl. Phys. Lett. 81, 4130 (2002) [42] K. A. Bulashevich, S. Yu. Karpov, and R. A. Suris: phys. stat. sol. (b) 243, No. 7, 1625 (2006)
摘要: 本論文中使用光輔助電化學技術將氮化鎵磊晶層氧化蝕刻形成奈米多孔隙結構,應用於氮化銦鎵發光元件之p型氮化鎵表面粗化,製作高效率發光元件,利用在p型氮化鎵表面產生之孔隙結構,將氮化銦鎵發光層與氮化鎵位障層因晶格不匹配所造成之壓縮應力進行部分釋放,以減少壓電場效應提升內部量子效應,並可藉由孔洞結構造成表面粗化,降低全反射的發生機率進而增加光的取出率,我們將對於孔隙結構對發光二極體元件的製程方式、光性及電性加以探討。 利用掃描式電子顯微鏡、原子力顯微鏡,分析其表面型態結構,再利用光激發螢光、顯微光激螢光、電激發螢光等光譜量測技術,來分析含有氮化銦鎵/氮化鎵(InGaN/GaN)多重量子井(Multiple-Quantum Well)結構奈米孔洞(nanoporous)的光學特性及能帶結構變化。由實驗結果可觀察到,具奈米多孔隙氮化鎵發光二極體之光激與電激螢光光譜,因壓電場減少所造成的藍移現象,在變電壓光激螢光光譜中可觀察到量子井能帶結構變化,以及奈米孔隙結構造成之蕭特基障礙高度提高的影響。為了避免因蕭特基障礙高度提高產生的熱效應使電激發光強度下降,因此建立部分區域光輔助氧化製程,有效降低奈米孔隙元件之操作電壓,避免熱效應影響,製作高效率奈米孔隙發光元件。
In this thesis, the nanoporous p-type GaN:Mg structures were fabricated through a photoelectrochemical (PEC) oxidation and an oxide-removing process. The photoluminescence (PL) intensities of GaN and InGaN/GaN multi-quantum-well (MQW) structures were enhanced by forming this nanoporous structure to increase light extraction efficiency. The PL emission peaks of MQW active layer have the blueshift phenomenon from 461.8 nm (standard) to 456.3 nm (nanoporous) measured at 10 K caused by partially releasing the compressive strain from the top nanoporous GaN:Mg layers. The internal quantum efficiency could be increased by partial strain releasing to reduce piezoelectric field in the active layer. The thermal activation energy of a nanoporous structure (58.5 meV) is higher than the standard one (32.5 meV) from a temperature dependent PL measurement. The nanoporous InGaN-based LED structure have the blue shift phenomenon of electroluminescence (EL) emission spectrum and 31% light output power enhancement compared to the standard LED. The pattern nanoporous InGaN-based LED was treated through the PEC oxidation process to reduce the Schottky barrier height and increase light output power prevent from the thermal heat effect. The PEC oxidation process successfully reduced the operating voltage and thermal heat effect of the pattern-nanoporous LEDs for high efficiency nanoporous LEDs applications.
URI: http://hdl.handle.net/11455/11188
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.