Please use this identifier to cite or link to this item:
標題: 電解沉積Li3-3xFexPO4 應用於薄膜鋰離子電池之特性研究
Characterization of Electrolytic Li3-3xFexPO4 Coatings for Thin Film Lithium Ion Batteries
作者: 劉漢章
Liu, Han-Chang
關鍵字: 電化學合成
Electrochemical synthesis
cathodic polarization curves
deposition mechanism
solid electrolyte
lithium ionic conductivity
activation energy
amorphous FePO4
Raman spectroscopy
出版社: 材料工程學系所
引用: [1]. M. Balkanski, Solar Energy Materials & Solar Cells, “Solid-state microbatteries for electronics in the 21st century”, 62 (2000) 21. [2]. N. J. Dudney, B. J. Neudecker,“Solid state thin-film lithium battery systems”, Current Opinion in Solid State and Materials Science, 4 (1999) 479. [3]. X. Yu, J.B. Bates, G. E. Jellison, Jr., and F. X. Hart, “A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorous Oxynitride”, J. Electrochem. Soc., 144 (1997) 524. [4]. H. Kawai and J. Kuwano,“Lithium Ion Conductivity of A-Site Deficient Perovskite Solid Solution La0.67-xLi3xTiO3”, J. Electrochem. Soc., 141 (1994) L78. [5]. M. A. Subramaman, R. Subramanlan and A. Clearfield, Solid State Ionics,“Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf)”, 18/19 (1986) 562. [6]. H. Aono, E. Sugimoto, Y Sadaoka, N. Imanaka and G. Adachi, “Ionic Conductivity of Lithium Titanium Phosphate (Li1+xMxTi2-x(PO4)3, M=Al, Sc, Y, and La) Systems”, J. Electrochem. Soc., 136 (1989) 590. [7]. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, “Nano-sizedtransition-metaloxidesas negative-electrode materials for lithium-ion batteries”, Nature 407 (2000) 496. [8]. Y. Idota, T. Kubota, A. Mastufuji, Y. Maekawa, T. Miyasaka, “Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material”, Science 276 (1997) 1395. [9]. S. Denis, E. Baudrin, M. Touboul, J. M. Tarascon, “Synthesis and electrochemical properties vs. Li of amorphous vanadates of general formula RVO4 (R= In, Cr, Fe, Al, Y)”, J. Electrochem. Soc., 144 (1997) 4099. [10]. S. S. Kim, H. Ikuta, M. Wakihara, “Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery”, Solid State Ionics 139, (2001) 57. [11]. [12]. T. Handa, S. Shoji, S.Ike, S. Takeda and T. Sekiguchi, 1997 International Conference on Sloid-State Sensors and Actuators, Chicago, June 16- 19 (1997). [13]. J. B. Bates, G. R. Gruzalski, N. J. Dudney, and C. F. Luck, Solid State Division, Oak Ridge National Laboratory Oak Ridge, Tennessee 37831. [14]. W. Y. Liu, Z. W. Fu, Q. Z. Qin, “A sequential thin-film deposition equipment for in-situ fabricating all-solid-state thin film lithium batteries”, Thin Solid Films 515 (2007) 4045. [15]. C. L. Li, B. Zhang, and Z. W. Fu, “Physical and Electrochemical Characterization of Thin Films of Iron Phosphate and Nitrided Iron Phosphate for All-Solid-State Batteries”, J. Electrochem. Soc, 153 (9) (2006) E160. [16]. S. D. Jones, J. R. Akridge, “A microfabricated solid-state secondary Li battery”, Solid State Ionics, 86-88 (1996) 1291. [17]. B. J. Neudecker, R. A. Zuhr, J. B. Bates,“Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics”, J. Power Sources, 81-82 (1999) 27. [18]. J. Scfoonman, E. M. Kelder,“Thin film solid electrolytes and electrodes for rechargeable lithium-ion batteries”, J. Power Sources, 68 (1997) 65. [19]. R. P. Raffaelle, J. D. Harris, D. Hehemann , D. Scheiman, G. Rybicki, A. F. Hepp, “A facile route to thin-film solid state lithium microelectronic batteries”, J. Power Sources, 89 (2000) 52. [20]. J. Schwenzel, V. Thangadurai, W. Weppner, “Developments of high-voltage all-solid-state thin-film lithium ion batteries”, J. Power Sources, 154 (2006) 232. [21]. M. P. Vinod, D. Bahnemann, J. Solid State Electrochem., 6 (2002) 498. [22]. N. Kuwata, R. Kumar, K. Toribami, T. Suzuki, T. Hattori, J. Kawamura,“Thin film lithium ion batteries prepared only by pulsed laser deposition”, Solid State Ionics, 177 (2006) 2827. [23]. Y. S. Park, S. H. Lee, B. I. Lee, S. K. Joo, “All-Solid-State Lithium Thin-Film Rechargeable Battery with Lithium Manganese Oxide, ”Electrochem. Solid State Lett., 2 (1999) 58. [24]. J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, C. D. Evans, “Thin-film lithium and lithium-ion batteries”, Solid State Ionics, 135 (2000) 33. [25]. N. J. Dudney, J. B. Bates, R. A. Zuhr, S. Young, J. D. Robertson, H. P. Jun, S. A. Hackney, “Nanocrystalline LixMn2-yO4 Cathodes for Solid-State Thin-Film Rechargeable Lithium Batteries” J. Electrochem Soc., 146 (1999) 2455. [26]. B. J. Neudecker, R. A. Zuhr, B. S. Kwak, J. B. Bates, and J. D. Robertson “Lithium Manganese Nickel Oxides Lix(MnyNi1-y)2-xO2”. J Electrochem Soc., 145 (1998) 4148. [27]. A. Ueda and J. B. Bates: 3d-Metal Doped LiMn2O4 Thin Films. In Proceedings of the Electrochemical Society, Lithium Batteries, Boston, 98-16 (1999) 286. [28]. B. J. Neudecker, N. J. Dudney, and J. B. Bates, “Lithium-Free Thin-Film Battery with In Situ Plated Li Anode” J. Electrochem Soc., 147 (2) (2000) 517. [29]. S. H. Lee, P. Liu, C. E. Tracy, D. K. Benson, “All-Solid-State Rocking Chair Lithium Battery on a Flexible Al Substrate”, Electrochem Solid-State Lett., 2 (1999) 425. [30]. B. J. Neudecker, R. A. Zuhr, J. B. Bates. Lithium thin-film batteries with Sn3N4, Zn3N2, and in situ plated Li anodes. In: The 195th Meeting of the Electrochemical Society, May 2-6, Seattle, WA, 1999. Paper no. 841. [31]. P. P. Soo, B. Huang, Y-M. Chiang, D. R. Sadoway, A. M. Mayes, “Rubbery Block Copolymer Electrolytes for Solid-State Rechargeable Lithium Batteries”, J Electrochem. Soc., 146 (1999) 32. [32]. D. Peramunage, K. M. Abraham, “Preparation of Micron-Sized Li4Ti5O12 and Its Electrochemistry in Polyacrylonitrile Electrolyte-Based Lithium Cells”, J. Electrochem. Soc., 145 (1998) 2609. [33]. D Peramunage, K. M. Abraham, “The Li4Ti5O12/PAN Electrolyte//LiMn2O4 Rechargeable Battery with Passivation-Free Electrodes”, J. Electrochem Soc., 145 (1998) 2615. [34]. W. H. Ho, “Electrochemical Method for Preparing MnO2, SnO2, SnP2O7, and In2O3 Applied in Thin Film Lithium Battery”, Ph D thesis. [35]. T. Osaka, “Lithium ion batteries on the upswing”, Electrochem. Soc. Interface, 8 (1999) 9. [36]. W. H. Ho, S. K. Yen, “Characterization of electrolytic manganese oxide coating on pt for lithium battery applications”, J. Electrochem. Soc. 152 (2005) A506. [37]. W. H. Ho and S. K. Yen, “Preparation and characterization of indium oxide film by electrochemical deposition”, Thin Solid Films, 498 (2006) 80. [38]. W. H. Ho, H. C. Liu, H. C. Chen, S. K. Yen, “Characterization of Electrolytic Tin Dioxide Deposition on Pt for Lithium Ion Battery Applications”, Surface and Coatings Technology, 201 (2007) 7100. [39]. W. H. Ho, S. K. Yen, “Electrochemical synthesis of SnHPO4/H3PO3 on Pt and forming SnP2O7” Electrochem. Solid State Lett., 8 ( 2005) C134. [40]. H. C. Liu and S. K. Yen, “Characterization of Electrolytic Co3O4 Thin Films as Anodes for Lithium Ion Batteries”, J. Power Sources, 166 (2007) 478. [41]. S. Han, B. Jang, T. Kim, S. M. Oh, and T. Hyeon, “Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes”, Adv, Funct. Mater, 15 (2005) 1845. [42]. G. X. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H. K. Liu, S. X. Dou, “Investigation of cobalt oxides as anode materials for Li-ion batteries”, J. Power Source, 109 (2002) 142. [43]. U. V. Alpen, A. Rabenau, and G. H. Talat, “Ionic conductivity in Li3N single crystals”, Appl. Phys. Lett., 30 (1977) 621. [44]. B. A. Boukamp and R. A. Huggins, “Fast ionic conductivity in lithium nitride”, Mater. Res. Bull., 13 (1978) 23. [45]. G. Robert, J. P. Malugani, and A. Saida, “Fast ionic silver and lithium conduction in glasses”, Solid State Ionics, 3/4 (1981) 311. [46]. H. Wada, M. Menetrier, A. Levasseur, and P. Hagenmuller, “Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses”, Mater. Res. Bull., 18 (1983) 189. [47]. H.Y. P. Hong, “Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors”, Mater. Res. Bull., 13 (1978) 117. [48]. J. B. Goodenough, H. Y. P. Hong, and J. A. Kafalas, “Fast Na+-ion transport in skeleton structures”, Mater. Res. Bull., 11 (1976) 203. [49]. Z. X. Lin, H. J. Yu, S. C. Li, and S. B. Tian, “Phase relationship and electrical conductivity of Li1+xTi2−xGaxP3O12 and Li1+2xTi2−xMgxP3O12 systems”, Solid State Ionics, 18-19 (1986) 549. [50]. Z. X. Lin, H. J. Yu, S. C. Li, and S. B. Tian, “Lithium ion conductors based on LiTi2P3O12 compound”, Solid State Ionics, 31 (1988) 91. [51]. S. C. Li and Z. X. Lin, “Phase relationship and ionic conductivity of Li1+xTi2−xInxP3O12 system”, Solid State Ionics, 9-10, (1983) 835. [52]. S. Hamdoune and D. Tranqui, “Ionic conductivity and crystal structure of Li1+xTi2−xInxP3O12”, Solid State Ionics., 18&19 (1986) 587. [53]. A. Hayashi, Y. Ishikawa, S. Hama, T. Minami, M. Tatsumisago, “Fast Lithium-Ion Conducting Glass-Ceramics in the System Li2S-SiS2-P2S5”, Electrochem. Solid State Lett., 6 (2003) A47. [54]. E. Reculeau, A. Elfakir and M. Quarton,“Caractérisation et prévision structurale d''une nouvelle variété de Li3PO4”, J. Solid State Chem., 79 (1989) 205. [55]. W. H. Baur, “Solid Solutions between octahedral and tetrahedral olivine types in Li---Zn-germanates”, Inorg. Nucl. Chem. Lett., 16 (1980) 525. [56]. B. Wang, B. C. Chakoumakos, B. C. Sales, B. S. Kwak, and J. B. Bates, “Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure”, J. Solid State Electrochem., 115 (1955) 313. [57]. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries”, J. Electrochem. Soc., 144 (1997) 1188. [58]. M. P. Pasternak, G. K. Rozenberg, A. P. Milner, M. Amanowicz, U. Schwaez, K. Syassen, R. D. Taylor, M. Hanfland, and K. Brister, “Pressure-Induced Concurrent Transformation to an Amorphous and Crystalline Phasein Berlinite-Type FePO4”, Phys. Rev. Lett., 79 (1997) 4409. [59]. Y. Song, P. Y. Zavalij, M. Suzuki, and M. S. Whittingham, “New Iron (III) Phosphate Phases: Crystal Structure and Electrochemical and Magnetic Properties”, Inorg. Chem., 41 (2002) 5778. [60]. P. Reale, B. Scrosati, C. Delacourt, C. Wurm, M. Morcrette, and C. Masquelier, “Synthesis and Thermal Behavior of Crystalline Hydrated Iron(III) Phosphates of Interest as Positive Electrodes in Li Batteries”, Chem. Mater., 15 (2003) 5051. [61]. Y. S. Hong, K. S. Ryu, Y. J. Park, M. G. Kim, J. M. Leeb and S. H. Chang, “Amorphous FePO4 as 3 V cathode material for lithium secondary batteries”, J. Mater. Chem., 12 (2002) 1870. [62]. C. Masquelier, P. Reale, C. Wurm, M. Morcrette,L. Dupont and D. Larchera, “Hydrated Iron Phosphates FePO4•nH2O and Fe4(P2O7)3•nH2O as 3 V Positive Electrodes in Rechargeable Lithium Batteries”, J. Electrochem. Soc., 149 (2002) A1037. [63]. D. Son, E. Kim, T. G. Kim, M. G. Kim, J. Cho, B. Park, “Nanoparticle iron-phosphate anode material for Li-ion battery”, Appl. Phys. Lett., 85 (2004) 5875. [64]. Y. S. Hong, Y. J. Park, K. S. Ryu, S. H. Chang, “Crystalline Fe3PO7 as an electrode material for lithium secondary batteries”, Solid State Ionics, 156 (2003) 27. [65]. Y. W. Xiao, J. Y. Lee, A. S. Yu, Z. L. Liu, “Electrochemical Performance of Amorphous and Crystalline Sn2P2O7 Anodes in Secondary Lithium Batteries”, J. Electrochem. Soc., 146 (1999) 3623. [66]. I. A. Courtney, J. R. Dahn, “Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2BPO6 Glass”, J. Electrochem. Soc., 144 (1997) 2943. [67]. M. L. Elidrissi Moubtassim, J. I. Corredor, J.L. Tirado, C. Pe´rez Vicente, “SnHPO4: a promising precursor for active material as negative electrode in Li-ion cells”, Electrochim. Acta, 47 (2001) 489. [68]. R. P. Suvarna, K. R. RAO and K. Subbarangaiah, “A Simple Technique for. A.C. Conductivity Measurements”, Bull. Mater. Sci., 25 (2002) 647. [69]. P. Birke, W. F. Chu, W. Weppner, “Materials for lithium thin-film batteries for application in silicon technology”, Solid State Ionics, 93 (1997) 1. [70]. M. Jamal, G. Venugopal, M. Shareefuddin, M. N. Chary, “Sodium ion conducting glasses with mixed glass formers NaI-Na2O-V2O5-B2O3: application to solid state battery”, Mater. Lett., 39 (1999) 28. [71]. D. A. Jones, Principles and prevention of corrosion, 2nd ed., Prentice-Hall Inc., NJ, 1996, pp. 80. [72]. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc., New York, 2001, pp. 163. [73]. S. K. Yen, C. M. Lin, “Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium”, Materials Chemistry and Physics, 77 (2002) 70. [74]. F. G. Cottrell, “Residual current in galvanic polarization, regarded as a diffusion problem” Zeitschrift für Physikalische Chemie, 42 (1903) 385. [75]. C. Keffer, A. Mighell, F. Mauer, H. Swanson, S. Block, “Crystal structure of twinned low-temperature lithium phosphate”, Inorg. Chem., 6 (1967) 119. [76]. B. Wang, B. C. Chakoumakos, B. C. Sales, B. S. Kwak, J. B. Bates, “Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure”, J. Solid State Chem., 115 (1995) 313. [77]. L. Popovic, B. Manoun, D. de waal, M. K. Nieuwoudt and J. D. Comins, “Raman spectroscopic study of phase transitions in Li3PO4”, J. Raman Spectros., 34 (2003) 77. [78]. R. Kanno , T. Hata, Y. Kawamoto, M. Irie, “Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system”, Solid State Ionics, 130 (2000) 97. [79]. T. J. Kim, H. S. Moon, S. W. Lee, J. W. Park, “Ionic conductivity of LixB1−x/3PO4 ceramic electrolyte based on defect models”, J. Power Sources, 123 (2003) 65. [80]. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and D. Adachi, “Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate”, J. Electrochem. Soc., 140 (1993) 1827. [81]. M. J. G. Jak, E. M. Kelder, S. J. Everstein, J. Schoonman, “Influence of synthesis parameters on the electrical and structural properties of nanostructured BPO4-Li2O”, J. Power Sources, 81-82 (1999) 808. [82]. P. C. J. Graat, M. A. J. Somers, “Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra”, Applied Surface Science, 100/101 (1996) 36. [83]. R. Kanno, T. Hata, Y. Kawamoto, M. Irie, “Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system”, Solid State Ionics, 130 (2000) 97. [84]. J. K. Han, H.Y. Song, F. S. and B. T. Lee, “Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method”, Mater. Chem. Phys. 99 (2006) 235. [85]. Y. Q. Jia, “Calculations for the vibration frequencies of the O---H O bond in KH2PO4 by a semiempirical method”, Spectrochim. Acta, 49A (1993) 1015. [86]. D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche, J. M. Tarascon, “Effect of Particle Size on Lithium Intercalation into α-Fe2O3”, J. Electrochem. Soc., 150 (2003) A133.
摘要: 本研究擬利用陰極電化學方法被覆對熱及電化學穩定的磷酸鍍膜Li3-3xFexPO4於白金片上,針對電化學沈積機構、製程參數、鍍層性質及其運用在薄膜鋰電池上之特性作探討,最終結果可歸納成四個部分如下所示: 1. 電化學沈積Li3PO4 (Li3-3xFexPO4, x = 0) 塗層當作電解質已經成功的被覆在白金電極上。經由儀器分析,結果顯示Li3PO4塗層在500℃時會由β-phase轉變至γ-phase,且在室溫下離子導電度可達到8.62×10-8 S cm-1,並提出Li3PO4的電化學沈積機構。 2. 經由LiNO3, NH4H2PO4及 Fe(NH4)2(SO4)2.6H2O的混合水溶液,成功的在白金電極上合成Li3−3xFexPO4 (x=0.20,0.45)塗層。經過交流阻抗分析,可以得到最佳的鐵離子添加量為x = 0.20,其在室溫下的導電性為1.77 × 10−7 S cm−1,同時發現Li+活化能會隨著鐵添加量增加而增加,從0.42 (x = 0)增加到0.62 eV (x = 0.45)。 3. FePO4 (Li3-3xFexPO4, x= 1)塗層可應用於防蝕、觸媒、污水純化、鐵電材料及鋰電池等用途上。在這裡一個新穎的方法,即經由電化學方法在Fe(NO3)3•9H2O及(NH4)2HPO4等比例的混合水溶液中成功的合成出非結晶性的磷酸鐵塗層。沈積塗層經由儀器分析,顯示沈積塗層為非結晶性Fe(OH)HPO4•H2O化合物,進一步在250℃內退火脫去一個結晶水形成Fe(OH)HPO4,最後在600℃內縮合成FePO4,並且在600℃以上形成hexagonal結構。經場發射掃瞄式電子顯微鏡觀察,塗層表面的奈米孔洞隨著溫度上升而逐步變大,晶粒也聚集成長。 4. FePO4經由50圈的充放電測試,結果顯示在退火300℃的FePO4塗層保有最佳的放電電容量260 mAh/g,相對於LiFePO4做為鋰電池正極材料擁有較高的電容量(理論電容量:170 mAh/g),並且提出Li+在FePO4嵌入脫出的電化學反應機構。
In this study, the electrochemical syntheses of cathodic method was used to prepare the coating of Li3-3xFexPO4 films on Pt substrates. Also, the electrochemical mechanisms of deposition and the characterization of these films for lithium batteries were discussed. This dissertation contained four parts. Ⅰ. Electrochemical deposition of Li3PO4 (Li3-3xFexPO4, x = 0) coating as the solid electrolyte has been carried out on Pt in LiNO3 and NH4H2PO4 aqueous solution. The coated specimens were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), Field Emission Scanning Electron Microscope (FE-SEM), Fourier transform infrared spectrometer (FTIR) analysis and Electrochemical Impedance Spectroscopy (EIS). The orthorhombic β-phase Li3PO4 was existence until 500℃ transition to orthorhombic γ-phase. The lithium ionic conductivity of 100 nm crystalline Li3PO4 thin film was about 8.62×10-8 S cm-1 at 25℃. Also, the mechanism of electrolytic Li3PO4 coating on Pt was discussed in this article. Ⅱ. Electrolytic Li3−3xFexPO4 ( x = 0.20,0.45) coating on Pt as the solid electrolyte has been carried out in the mixture of LiNO3, NH4H2PO4 and Fe (NH4)2(SO4)2.6H2O aqueous solution. The ionic conductivity of Li3−3xFexPO4 was investigated in terms of defect models with an iron level of 0 ≦ x ≦ 0.45. To determine the changes in ionic conductivity and activation energy of Li3−3xFexPO4 with iron content x, AC-IS measurements are carried out at temperatures from 25 to 70℃. The maximum ionic conductivity is 1.77 × 10−7 S cm−1 for x = 0.20 at room temperature, and the activation energy was increased from 0.42 to 0.62 eV with increasing iron contents. Ⅲ. A novel method of FePO4 (Li3-3xFexPO4, x = 1) coatings on Pt by electrochemical synthesis in 0.01 M Fe(NO3)3•9H2O and 0.01 M (NH4)2HPO4 mixed aqueous solution was presented. After deposition, the coated specimens were further annealed and characterized by ICP-AES, XRD, FE-SEM, FTIR, and TG-DTA. It was found that the uniform as-deposited film was amorphous Fe(OH)HPO4•H2O, dehydrated into Fe(OH)HPO4 under 250℃, further condensed into FePO4 below 600℃, and fully crystallized at 600℃. Also, the sponge-like morphology of the annealed specimen was found full of nanopores and tuned with increasing temperature. Ⅳ. The electrochemical properties of the iron phosphates were characterized with a voltage window of 0.2–2.5 V. Annealing at 300℃ had the excellent discharge capacity of 260 mAh/g after 50 cycles, while the cathode LiFePO4 has a theoretical capacity of 170 mAh/g. Based on ex situ Raman spectra, the electrochemical mechanism of FePO4 film with lithium upon cycling was proposed
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.