Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11212
標題: 轉換鎂合金廢料為再生氫氣能源之研究
Investigation of Hydrogen Production from End-of-life Magnesium Alloy Scraps
作者: 劉昆達
Liu, Kun-Ta
關鍵字: Hydrogen Generation
製氫
Magnesium Scraps
Corrosion
Recycling
Catalyst
鎂合金廢料
腐蝕
回收
觸媒
出版社: 材料工程學系所
引用: 1. Energy Information Administration, Outlook, (2006), Highlight, p.2. 2. D.C. North, Int. J. Hydrogen Energy, 17 (1992) 509-512. 3. J.M. Ogden, M.M. Steinbugler and T.G. Kreutz, J. Power Sources, 79 (1999) 143-168. 4. L.F. Brown, Int. J. Hydrogen Energy, 26 (2001) 381-397. 5. Jaesung Han, II-Su Kim and Keum-Seob Choi: Int. J. Hydrogen Energy, 27 (2002) 1043-1047. 6. J. Ogden, Scientific American, 295 (2006) 66-73. 7. M.L. Wald, Scientific American, 290 (2004) 66-73. 8. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo and M. Binder, Int. J. Hydrogen Energy, 25 (2000) 969-975. 9. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo and M. Binder, J. Power Sources, 85 (2000) 186-189. 10. J. Wakefield, Scientific American, 286 (2002) 36-38. 11. T. Hiraki, M. Takeuchi, M. Hisa, T. Akiyama, Mater, Trans. 46 (2005) 1052-1057. 12. M. H. Grosjean, M. Zidoune, J. Y. Huot, L. Roué, Int. J. Hydrogen Energy, 31 (2006) 1159-1163. 13. M. H. Grosjean, M. Zidoune, L. Roué, J. Alloys and Compounds, 404-406 (2005) 712-715. 14. M. H. Grosjean, M. Zidoune, L. Roué, J. Y. Huot, Int. J. Hydrogen Energy, 31 (2006) 109-119. 15. S. S. Sergev, S. A. Black, Proceedings of the Intersociety Energy Conversion Engineering Conference, 1 (1977) 973-980. 16. S. S. Martínez, W. L. Benítes, A. A. Á. Gallegos and P. J. Sebastián, Sol. Energy Mater. Sol. Cells, 88 (2005) 237-243. 17. S. S. Martínez, L. A. Sánchez, A. A. Á. Gallegos and P. J. Sebastián, Int. J. Hydrogen Energy, accept, to be published in 2007. 18. G. Song and A. Atrens, Adv. Eng. Mater. 5(12) (2003) 837-858. 19. O. Lunder, J.H. Nordlien, K. Nisancioglu, Corros. Rev. 15(3-4) (2003) 439-469. 20. M.R. Bothwell and H.P. Godard, The Corrosion of Light Metals. NY: John & Son (1967) 257. 21. P. R. Hornsby and C. L. Watson, Plast. Rubber Process, Appl. 6 (1986) 169-175. 22. V. Drozd, S. Saxena, S. V. Garimella, A. Durygin, Int. J. Hydrogen Energy, accept, to be published in 2007. 23. Hikmet Altun, Sadri Sen, Materials & Design, 25 (2004) 637-643. 24. A. A. Luo, JOM, 54 (2002) 42-48. 25. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A, 302 (2001) 37-45. 26. H. Furuya, N. Kogiso, S. Matunaga, K. Senda, Mater. Sci. Forum, 350 (2000) 341-348. 27. G. Hanko, H. Antrekowitsch and P. Ebner. JOM, 54 (2002) 51-54. 28. U.M.J. Boin, Wide open gap of magnesium recycling. Metall. 55(5) (2001) 283-286. 29. C.Y. Cho, K.H. Wang, and J.Y. Uan, Materials Transactions, 46 (2005) 2704-2708. 30. J.Y. Uan, C.Y. Cho and K.T. Liu, Int. J. Hydrogen Energy, accepted, to be published in 2007. 31. M.R. Bothwell and H.P. Godard, (1967) The Corrosion of Light Metals. NY: John & Son p.257. M. Pourbaix, “Atlas of Electrochemical Equilibrium in Aqueous Solution ”, 2nd edition, National Association of Corrosion Engineers, Texas, (1974), p.139-145. 32. M. Pourbaix, “Atlas of Electrochemical Equilibrium in Aqueous Solution ”, 2nd edition, National Association of Corrosion Engineers, Texas, (1974), p.139-145.
摘要: 鎂合金材料在應用上擁有多項優點例如質輕、比強度高、抑振效果佳與良好的電磁遮蔽效果等。隨著輕量化省能源之趨勢,鎂合金零組件已逐漸應用於汽車工業。此外,在3C電子產品外殼及底座等也已大量採用鎂合金製品。因此,從製造端到鎂合金產品使用壽命端 (post-consumed or end-of-life Mg production),預料鎂合金廢棄產品中將有大量鎂合金廢料。由於大多數鎂合金廢料含過多危害鎂合金抗腐蝕能力之雜質元素或表面鍍層不易去除等因素,目前無法以具經濟效率之方式,將此類鎂廢料回收再次利用。本研究提出一種將鎂合金廢料轉換為氫氣來源之方式,使用鎂合金廢料作為產氫材料並加予金屬網觸媒(白金鈦網、不鏽鋼網)後置於3.5 wt%氯化鈉水溶液中產生氫氣,產出氫氣經由氣相層析儀分析得知純度為98.9 ± 0.37 mol.%。實驗結果顯示白金鈦網與不鏽鋼網均可以重複進行使用,前者經過十次使用於50分鐘所產出氫氣總體積量平均為29.39 liter,後者經過五次使用產出總體積量平均為13.17 liter。另外將所產出氫氣通入質子交換膜燃料電池(PEMFC)進行電力產生。本研究是一種產生氫氣過程無需外加任何能量且不會對環境造成污染之高純度氫氣製備法。
Because of magnesium alloys have low density and high specific strength, and shock absorption ability, Mg alloys has an increasing number of uses in automotive and aerospace and electronic consumer. When Mg products are in great demand for various applications, mass of end-of-life and post-consumed Mg products generated. However, only high-grade Mg scraps are recyclable and over half of all Mg scraps cannot be processed economically. This work proposes a new method for generating H2 gas in from waste metallic magnesium, catalyzed by a platinum-coated titanium net or 304 stainless steel net in 3.5 wt% aqueous NaCl by the hydrolysis of low-grade Mg alloy scraps. A Pt-coated Ti net or 304 stainless steel net was used to catalyze hydrolysis. Pt-coated Ti net and 304 stainless steel nets are reused. The Pt-coated Ti net was used five times, the generated H2 of average cumulative volume of 33.7 liter in 50 minutes. The 304 stainless steel nets was used five times, the generated H2 of average cumulative volume of 13.17 liter in 50 minutes. The hydrogen produced from magnesium scraps and oxygen obtained from cylinder, was fed to proton exchange membrane fuel cell (PEMFC) to produce electricity. High purity hydrogen has been produced from spontaneous chemical reaction without any environmental pollution.
URI: http://hdl.handle.net/11455/11212
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.