Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11217
標題: 快速凝固Mg-Al-Zn合金薄板於氯化鈉水溶液腐蝕性質及其綠色環保防蝕鍍層之研究
Corrosion Properties of Rapidly Solidified Mg-Al-Zn Alloy Thin Plate in Aqueous NaCl and Eco-coating Process for the Mg Alloy to Protect from Corrosion
作者: 余秉隆
Yu, Bing-Lung
關鍵字: Magnesium alloy
鎂合金
Corrosion
Die skin
Eco-coating process
Mg film
Sacrificial anode
Biomimetic material
Calcium carbonate
腐蝕
快速凝固層
綠色環保鍍層
純鎂膜
犧牲陽極
仿生材料
碳酸鈣
出版社: 材料工程學系所
引用: 參考文獻 1. J.E. Gray, B. Luan, “Protective coatings on magnesium and its alloys-a critical review”, J. Alloys Compd., 336 (2002), pp. 88–113. 2. R. Ambat, N.N. Aung and W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy, Corr. Sci., 42 (2000), pp. 1433-1455. 3. G. Song, A. Atrens and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corr. Sci., 41 (1999), pp. 249-273 4. M. Avedesian and H. Baker: Magnesium and magnesium alloys, ASM Specialty Handbook, ASM, Metals Park, Ohio, (1999), pp.1-51. 5. I. Azkarate, P. Cano, A.D. Barrio, M. Insausti and P.S. Coloma, Alternatives to Cr(VI) conversion coatings for magnesium alloys, In: K.U. Kainer, editor. International Congress of Magnesium Alloys and Their Applications, Werkstoff-Informationsgesellschaft mbH, Germany, (2000), pp.475-483. 6. D. Chidambaram, G.P. Halada and C.R. Clayton, Development of a technique to prevent radiation damage of chromate conversion coatings during X-ray photoelectron spectroscopic analysis, Appli. Surf. Sci., 181 (2001), pp. 283-295. 7. G. Reiners and M. Griepentrog, Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage, Surf. Coatings Technol., 76-77 (1995), pp. 809-814. 8. J. Senf, G. Berg, C. Friedrich, E. Broszeit and C. Berger, Wear behaviour and wear protection of magnesium alloys using PVD coatings, In: Mordike BL, Kainer KU, editors. International Congress of Magnesium Alloys and Their Applications, Woifsburg, Germany, Werkstoff-Informationsgesellschaft; (1998), pp. 457-462. 9. J. Senf and E. Broszeit, Wear and corrosion protection of aluminum and magnesium alloys using chromium and chromium nitride PVD coatings, Adv. Eng. Mater., 1 (1999), pp. 133-137. 10. H. Wentz and L. Ganim, Recycling: the catchword of the 90''s: recycling of magnesium, Light Metal Age, 50 (1992), pp. 20-21. 11. L. F.Spencer, Met. Finish, 68 (1970), p. 32. 12. A. Elbetieha; M. H. Al-Hamood, Long-term exposure of male and female mice to trivalent and hexavalent chromium compounds: effect on fertility, Toxicology, 116 (1997), pp. 39-47. 13. Directive 2002/95/EC of the european parliament and of the council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Official Journal of the European Union, pp. L37/19-23. 14. K.Z. Chong and T.S. Shih, Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution, Mater. Chem. Phys., 80 (2003), pp. 191-200. 15. D. Hawake and D.L. Albright, A phosphate-permanganate conversion coating for magnesium, Metal Finishing, 93 (1995), pp. 34-38. 16. A.L. Rudd, C.B. Breslin and F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corr. Sci., 42 (2000), pp. 275-288. 17. C.S. Lin and S.K. Fang, Formation of cerium conversion coatings on AZ31 magnesium alloys, J. Elecrochem. Soc., 152 (2005), pp. B54-B59. 18. M.A. Gonzalez-nubez, P. Skeldon, G.E. Thompson and H. Karimzadeh, A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites, Corrosion, 55 (1999), pp. 1136-1143. 19. G. Hanko, H. Antrekowitsch and P. Ebner, Recycling automotive magnesium scrap, JOM, February 54 (2002), pp. 51-54. 20. M. Avedesian and H. Baker: Magnesium and magnesium alloys, ASM Specialty Handbook, ASM, Metals Park, Ohio, (1999), pp.194-210. 21. J.D. Hanawalt, C.E. Nelson and J.A. Peloubet, Corrosion studies of magnesium and its alloys, Trans. AIME, 146 (1942), pp. 273-299. 22. J.E. Hillis, The Effect of heavy mental contamination on magnesium corrosion performance, SAE Technical Paper Series, No. 830523, (1983). 23. R.W. Murray and J.E. Hillis, Magnesium Finishing:Chemical Treatment and coating practices, SAE Technical Paper Series, No. 900791, (1990). 24. R.W. Murray and J.E. Hillis, Powder coatings on high purity die casting magnesium for appearance and protecting, Driving die casting into the 21th century, Congress and Exposition, Detroit (1991). 25. I. Kavaliauskaite, M. Uibu, S. Teir, R. Kuusik, R. Zevenhoven and G. Denafas, Carbon dioxide long-term emissions and its storage options in the Baltic region, WIT Transations on Ecology and the Envionment, 81 (2005), pp. 439-448. 26. A. Demirbas, Correlations between carbon dioxide emissions and carbon contents of fuels, Energy Source, Part B: Planning and Policy, 1 (2006), pp. 421-427. 27. A. Demirbas, Hazardous emissions, global climate change and environmental precautions, Energy Source, Part B: Planning and Policy, 1 (2006), pp. 75-84. 28. S. Liu, J. Fan, Z. Zhao and Z. Wang, The novel photocatalysts used in carbon dioxide photoreduction, Huaxue Tongbao, 69 (2006), pp. w084/1-w084/7. 29. M. Mariani, Post-combustion CO2: separation and stocking. WIT Transations on Ecology and the Envionment, 86 (2006), pp. 785-791. 30. S. Yamaguchi, K. Ohga, M. Fujioka and M. Nako, Field test and history matching of the CO2 sequestration projest in coal in Japan, Internal J. Soc. Mater. Engineering for Resources, 13 (2006), pp. 64-69. 31. H.J.M. Bowen, Environmental Chemistry of the Elements, Academic, London, (1979), p. 333. 32. R.A. Berner, Chemical diagenesis of some modern carbonate sediments, Am. J. Sci. 264 (1966), pp. 1-36. 33. A. Gutjahr, H. Dabringhaus, R. Lacmann, Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite. II. The influence of divalent cation additives on the growth and dissolution rates, J. Cryst. Growth, 158 (1996), pp. 310-315. 34. C.S. Gopinath, S.G. Hegde, A.V. Ramaswamy, S. Mahapatra, Photoemission studies of polymorphic CaCO3 materials, Mater. Res. Bull., 37 (2002), pp. 1323-1332. 35. M. A. Meyers, A. Y.M. Lin, Y. Seki, P.Y. Chen, B. K. Kad, and S. Bodde, Structural biological composites: An overview, JOM, July (2002), pp. 35-41. 36. J.L. Bischoff and W.S. Fyfe, Catalysis, inhibition and the calcite-aragonite problem, Am. J. Sci., 266 (1968), pp. 65-79. 37. F.C. Meldrum, S.T. Hyde, Morphological influence of magnesium and organic additives on the precipitation of calcite, J. Cryst. Growth, 231 (2001), pp. 544-558. 38. F.C. Meldrum, S.T. Hyde, Morphological influence of magnesium and organic additives on the precipitation of calcite, J. Cryst. Growth, 231 (2001), pp. 544-558. 39. M. Pourbaix: Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, (1974), pp. 139-145. 40. E.F. Emley: Principles of Magnesium Technology, Hill Hall, Oxford, (1966), pp. 25-26. 41. I.J. Polmear, Light Alloy 3rd ed., Arnold, London, (1995), pp.17-18. 42. 蔡幸甫, “輕金屬產業發展狀況及商機”,工業材料雜誌, 174 (2000), pp.77-83. 43. Y. Kojima, Platform science and technology for advanced magnesium alloys, Mater. Sci. Forum, 350-351 (2000), pp. 3-17. 44. E. Aghion, B. Bronfin, F. VonBuch, S. Schumann and H. Friedrich, Newly Developed Magnesium Alloys for Powertrain Applications, JOM, November (2003), pp. 30-33. 45. M. Avedesian and H. Baker: Magnesium and magnesium alloys, ASM Specialty Handbook, ASM, Metals Park, Ohio, (1999), pp.226-248. 46. 陳錦修, “鎂合金在汽車工業之應用” 工業材料雜誌, 186 (2002), pp.148-152. 47. S. Schumann and F. Friedrich, The use of magnesium in cars - today and in future, International Congress of Magnesium Alloys and Their Applications, B.L. Mordike and K.U. Kainer, ed., Woifsburg, Germany, Werkstoff-Informationsgesellschaft, (1998), pp. 3-13. 48. F.H. Froes, Light Metal Age, August (1997), p. 46. 49. F.H. Froes, Light Metal Age, October (1997), p.18. 50. F.H. Froes, Light Metal Age, February (1998), p. 54. 51. F.H. Froes, D. Eliezer and E. Aghion, The science, technology, and applications of magnesium, JOM, September (1998), pp. 30-34. 52. N. Li, Magnesium Advances and Applications in North America Automotive Industry, Mater. Sci. Forum, 488-489 (2005), pp. 931-935. 53. B.L. Mordike and T. Ebert, Magnesium Properties-applications-potential, Mater. Sci. Eng. A, 302 (2001), pp. 37-45. 54. E. Aghion and B. Bronfin, Magnesium Alloys Development towards the 21th Century, Mater. Sci. Forum, 350-351 (2000), pp. 19-28. 55. H. Kuwafara, Y. Al-Abdullat, M. Ohta, S. Tsutsumi, K. Ikeuchi, N. Mazaki and T. Aizauta, Surface reaction of magnesium in Hank''s solutions, Mater. Sci. Forum, 350-351 (2000), pp. 349-358. 56. E. Aghion and B. Bronfin and D. Eliezer, The role of the magnesium industry in protecting the environment, J. Mater. Process. Tech., 117 (2001), pp. 381-385. 57. H. Friedrich and S. Schumann, Research for a “new age of magnesium” in the automotive industry, J. Mater. Process. Tech., 117 (2001), pp. 276-281. 58. R.E. Brown, Magnesium recycling yesterday, today, tomorrow, In: D.L. Stewart, J.C. Daley and R.L. Stephens, editors., Proceedings of the Fourth International Symposium on Recycling of Metals and Engineered Materials, TMS Annual Meeting (The Minerals & Materials Society), Warrendale, USA;2000. pp. 1317-1329. 59. H. Antrekowitsch and G. Hanko, Recycling of different types of magnesium scrap, In: H.I. Kaplan, editor., Magnesium Technology 2002, TMS Annual Meeting (The Minerals & Materials Society), Seattle, USA;2002. pp. 43-48. 60. A. Javaid, E. Essadiqi, S. Bell and B. Davis, Literature review on magnesium recycling, In: A.A. Luo, N.R. Neelameggham and R.S. Beals, editors., Magnesium Technology 2006, TMS Annual Meeting (The Minerals & Materials Society), San Antonio, USA;2006. pp. 7-12. 61. O. Lunder, J.E. Lein, T.K. Aune and K. Nisancioglu, The role of magnesium-aluminum (Mg17Al12) phase in the corrosion of magnesium alloy AZ91,Corrosion, 45 (1989), pp. 741-748. 62. G. Song, A. Atrens, X. Wu and B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corr. Sci., 40 (1998), pp. 1769-1791. 63. Y.B. Unigovski and E.M. Gutman, Surface morphology of a die-cast Mg alloy, Appli. Surf. Sci., 153 (1999), pp. 47-52. 64. G. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1 (1999), pp.11-33. 65. G. Song and A. Atrens, Understanding Magnesium Corrosion, Adv. Eng. Mater., 5 (2003), pp.837-858. 66. 林景扶, “鎂合金壓鑄簡介”,工業材料雜誌, 152 (1999), pp.81-90. 67. G. Ballerini, U. Bardi, A. Lavacchi, D. Migliorni, R. Bignucolo and G. Ceralo, Magnesium alloys for structural automotive applications, Magnesium Industry, 2 (2002), pp. 16-20. 68. O. Lunder, K. Nisancioglu and R.S. Hansen, Corrosion of die cast magnesium-aluminum alloys, SAE Technical Paper Series, No. 930755, (1993). 69. D.R. Lide: Handbook of Chemistry and Physics, 71st ed., CRC, Cleveland, (1991), pp. 8-1-8-57 70. R. Ambat, N.N. Aung and W.Zhou, Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy, J. Appli. Electrochem., 30 (2000), pp. 865-874. 71. G.L. Makar and J. Kruger, Corrosion of magnesium, Int. Mater. Rev., 38 (1993), pp. 138-153. 72. G. Song, A. Atrens, X. Wu, Z. Bo and B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corr. Sci., 40(1998)1769-1791. 73. Nadine Pebere, Christian Riera, Francis Dabosi, “Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy”, Electrochimica Acta, 35 (1999),pp. 555-561. 74. S. K. Das and L. A. Davis, “High performance aerospace alloys viarapid solidification processing”, Mater. Sci. Eng. A, 98 (1988), pp. 1-12. 75. F. Hemann, F. Sommer, H. Jones and R.G.J. Edyvean, Corrosion inhibition in magnesium-aluminum-based alloys induced by rapid solidification processing, J. Mater. Sci., 24 (1989), pp. 2369-2379. 76. R.K. Singh Raman, The role of microstructure in localized corrosion of magnesium alloys, Metall. Mater. Trans. A, 36A (2004), pp. 2525-2531. 77. R. Ambat, N.N. Aung and W. Zhou, Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy, J. Appl. Electrochem., 30 (2000), pp. 865-874. 78. G. Song and D.St. John, Corrosion performance of magnesium alloys MEZ and AZ91, Int. J. Cast Met. Res., 12 (2000), pp. 327-334. 79. C. Blawert, E. Morales, V. Heitmann and W. Dietzel, Corrosion properties of the skin of high pressure die cast AZ91 alloy, Light Metals Age. 21-24 (2005), pp. 109-126. 80. Directive 2002/96/EC of the european parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE), Official Journal of the European Union, pp. L37/24-38. 81. http://www.tri.org.tw/unfccc/Unfccc/UNFCCC01.htm. 82. http://www.tri.org.tw/unfccc/Unfccc/UNFCCC02.htm 83. W.D. Gunter and E.H. Perkins, Aquifer disposal of CO2-rich gases:reaction design for added capacity, Energy Convers. Mgmt, 34 (1993), pp. 941-948. 84. S. Holloway, An overview of the undergroud disposal of carbon dioxide, Energy Convers. Mgmt, 38 (1997), pp. 193-198. 85. M. Ozaki, K. Sonoda, Y. Fujioka, O. Tsukamoto and M. Komatsu, Sending CO2 into ocean with a hanging pipe from floating platform, Energy Convers. Mgmt, 36 (1995), pp. 475-478. 86. P.J. Wyllie, Phase equilibria in system calcium oxide-carbon dioxide-water and related systems, with implications for crystal growth of calcite and apatite, J. Am. Ceram. Soc., 50 (1967), pp. 43-46. 87. G. Simmons and P. Bell, Calcite-aragonite equilibrium, Science, 139 (1963), pp. 1197-1198 88. R.Meing, M.H. Meyers, M.A. Meyers and K.S. Vecchio, Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells, Acta Mater., 48 (2000) 2383-2398. 89. A. Lin and M. A. Meyers, Growth and structure in abalone shell, Mater. Sci. Eng. A, 390 (2005), pp. 27-41. 90. L. Addadi and S. Weiner, Control and design principles in biological mineralization, Angew. Chem., 31 (1992), pp. 153-169. 91. R.T. Chiroff, R.A. White, E.W. White, J.N. Weber and D.M. Roy, The restoration of the articular surfaces overlying Replamineform porous biomaterials, J. Biomed Mater. Res., 11 (1977), pp. 165-178. 92. S.I. Stupp and P.V. Braun, Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science,277 (1997), pp. 1242-1248. 93. M. Kitamura, Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium, J. Colloid Interface Sci., 236 (2001), pp. 318-327. 94. H. Konno, Y. Nanri and M. Kitamura, Crystallization of aragonite in causticizing reaction, Powder Technology, 123 (2002), pp. 33-39. 95. H. Konno, Y. Nanri and M. Kitamura, Effect of NaOH on aragonite precipitation in batch and continuous crystallization in causticizing reaction, Powder Technology, 129 (2003), pp. 15-21. 96. Z. Hu and Y. Deng, Superaaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants, J. Colloid Interface Sci., 226 (2003), pp. 359-365. 97. J.C. Carmona, J. G. Morales, J. F. Sainz and R. R. Clemente, Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives, Powder Technology, 130 (2003), pp. 307-315. 98. Z. Hu and Y. Deng, Synthesis of need-like aragonite from calcium choride and sparingly soluble magnesium carbonate, Powder Technology, 140 (2004), pp. 10-16. 99. J.C. Carmona, J. G. Morales, J. F. Sainz, E. Loste and R. R. Clemente, The mechanism of precipitation of chain-like calcite, J. Cryst. Growth, 262 (2004), pp. 479-489. 100. J.C. Carmona, J. G. Morales and R. R. Clemente, Morphological control of precipitated calcite obtained by adjusting the electrical conductivity in the Ca(OH)2-H2O-CO2 system, J. Cryst. Growth, 249 (2003), pp. 561-571. 101. M. Prieto, J.M. Garciaruiz and J.L. Amoros, Growth of calcite crystals with non-singular faces, J. Cryst. Growth, 52 (1981), pp. 864-867. 102. M. Deleuze and S.L. Brantley, Inhibition of calcite growth by Mg2+at 100ºC and 100 bars:influence of growth regime, Geochim. Cosmochim. Acta, 61 (1997), pp. 1475-1485. 103. M.M. Reddy and G.H. Nancollas, The effect of magnesium, strontium and sulfate ions, J. Cryst. Growth, 35 (1976), pp. 33-38. 104. G. Falini, S. Fermani, M. Gazzano and A. Ripamonti, Structure and morphology of synthetic magnesium calcite, J. Mater. Chem., 8 (1998), pp. 1061-1065. 105. D. chakrabarty and S. Mahapatra, Aragonite crystals with unconventional morphologies, J. Mater. Chem., 9 (1999), pp. 2953-2957. 106. S.I. Kuriyavar, R. Vetrivel, S.G. Hegde, A.V. Ramaswany, D. Chakrabarty and S. Mahapatra, Insights into the formation of hydroxyl ions in calcium carbonat: temperature dependent FTIR and molecular modeling studies, J. Mater. Chem., 10 (2000), pp. 1835-1840. 107. C.S. Gopinath, S.G. Hegde, A.V. Ramaswamy and S. Mahapatra, Photoemission studies of polymorphic CaCO3 materials, Materials Research Bulletin, 37 (2002), pp. 1323-1332. 108. H. Wei, Q. Shen, Y. Zhao, D. Wang and D. Xu, Crystallization habit of calcium carbonate in presence of sodium dodecyl sulfate and/or polypyrrolidone, J. Cryst. Growth, 260 (2004), pp. 545-550. 109. A.J. Xie, Y.H. Shen, X.Y. Li, Z.W. Yuan, L.G. Qiu, C.Y. Zhang and Y.F. Yang, The role of Mg2+ and Mg2+/amino acid in controlling polymorph and morphology of calcium carbonate crystal, Mater. Chem. Phys., 101 (2007), pp. 87-92. 110. L.J. Simpson, Electrochemically generated CaCO3 deposits on iron studied with FTIR and Raman spectroscopy, Electrochimica Acta, 43 (1998), pp. 2543-2547. 111. Y. Zhang and R.A. Dawe, Influence of Mg2+ on kinetics of calcite precipitation and calcite crystal morphology, Chemical Geology, 163 (2000), pp. 129-138. 112. S.L. Wolfson and H. Hartt, An initial investigation of calcareous deposits upon cathodic steel surfaces in sea water, Corrosion-NACE, 37 (1981), pp. 70-76. 113. M.M. Kunjapur, W.H. Hartt and S.W. Smith, Influence of temperature and exposure time upon calcareous deposits, Corrosion-NACE, 43 (1987), pp. 674-678. 114. S.H. Lin and S.C. Dexter, Effect of temperature and magnesium ions on calcareous deposition, Corrosion-NACE, 44 (1988), pp.615-622. 115. C. Deslouis, A. Doncescu, D Festy, O. Gil, V. Maillot, S. Touzain and B. Tribollet, Kinetics and characterization of calcareous deposits under cathodic protection in natural sea water, Mater. Sci. Forum, 289-292 (1998), pp. 1163-1180. 116. A.A. Tidblad and F. Herlitz, Initial growth of calcite deposits on the cathode of a chlorate cell. Surface characterization using scanning electron microscopy and X-ray microanalysis (SEM/EDS), Electrochimica Acta, 44 (1999), pp. 2251-2261. 117. C. Deslouis , D. Festy, O. Gil, V. Maillot, S. Touzain and B. Tribollet, Characterization of calcareous deposits in artificial sea water by impedances techniques:2-Deposit of Mg(OH)2 without CaCO3, Electrochimica Acta, 45 (2000), pp. 1837-1845. 118. Ch. Barchiche,C. Deslouis, D. Festy, O. Gil, Ph. Refait and S. Touzain, Characterization of calcareous deposits in artificial sea water by impedances techniques:3-Deposit CaCO3 in presence of Mg (II), Electrochimica Acta, 48 (2003), pp. 1645-1654. 119. J.M. Cruz, E.G. Figueroa, M.M. Hernandez and I. Gonzalez, Electrochemical treatments for selective growth of different calcium carbonate allotropic forms on carbon steel, Water Research, 38(2004)173-183. 120. J. Pavez, J.F. Silva and F. Melo, Effect of alginic acid from marine algae on calcium carbonate electrodeposited coating, J. Cryst. Growth, 282 (2005), pp. 438-447. 121. Y.Ota, N. Goto, I. Motoyama, T. Iwashita amd K. Nomura, U.S. Patent 4,824,654, April 25, (1989). 122. Q.S. Liu, W.Y. Liu, B. Chen and W. Chen, in: Proc. Int. Symp. Electr. Insul. Mater., Inst.Eng. Japan, Tokyo, (1998), pp. 159-161. 123. C. Gabrielli, G. Maurin, G. Poindessous and R. Rosset, Nucleation and growth of calcium by an electrochemical scaling process, J. Cryst. Growth, 200 (1999), pp. 236-250. 124. Elec Y. Wen, L. Xiang and Y. Jin, Synthesis of plate-like calcium carbonate via carbonation route, Materials Letter, 57 (2003), pp. 2565-2571. 125. H Leitmrir, Zur Kenntnis der Carbonate:Ι. Die Dimorphie des kohlensauren Kalkes, Neues. Jahrb. Mineral., 1 (1910), pp. 49-74. 126. H Leitmrir, Zur Kenntnis der Carbonate:II, Neues. Jahrb. Mineral., 40 (1916) 655-700. 127. Y. Katz, The interaction of magnesium with calcite during crystal growth at 25ºC-90ºC, Geochim. Cosmochim. Acta, 37 (1973), pp. 1563-1568. 128. K. Simkiss, Variation in the crystallization form of calcium carbonate from artificial sea water, Nature, 201 (1964), pp. 492-493. 129. J.L. Bischoff, Kinetics of calcite nucleation:magnesium ion inhibition and ionio strength catalysis, J. Geophys. Res., 73 (1968), pp. 3315-3322. 130. A. Katz, E. Sass and A. Starinsky, Geochim. Strontium behavior in the aragonite-calcite transformation. Experimental study at 40-98.deg, Cosmochim. Acta, 36 (1972), pp. 481-496. 131. M. Okumura and Y. Kitano, Coprecipitation of alkali metal ions with calcium carbonate, Geochim. Cosmochim. Acta, 50 (1986), pp. 49-58. 132. S.D. Sims, J.M. Didymus and S. Mann, Habit modification in synthetic crystals of aragonite and vaterite, J. Chem. Soc. Chem. Commun. 10 (1995), pp. 1031-1032. 133. N. Wada, K. Yamashita and T. Umegaki, Effect of silver, Aluminum and chrome ions on the polymorphic formation of calcium carbonate under conditions of double diffusion, J. Colloid Interface Sci., 201 (1998), pp. 1-6. 134. R. A. Berner, Role of magnesium in the crystal growth of calcite and aragonite from sea water, Geochim. Cosmochim. Acta, 39 (1975), pp. 489-504. 135. S. Raz, S. Weiner and L. Addadi, Formation of high-magnesian calcites via an amorphous precursor phase. Possible biological implications, Adv. Mater., 12 (2000), pp. 38-42. 136. D.A. Jones, Principles and prevention of corrosion, 2nd ed, Prentice Hall, Englewood Cliff (NJ), (1996), pp. 75-115. 137. Y.B. Unigovski and E.M. Gutman, Surface morphology of a die-cast Mg alloy, Appl. Surf. Sci., 153 (1999), pp. 47-52. 138. S. Mathieu, C. Rapin, J. Hazan and P. Steinmetz, Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys, Corr. Sci., 44 (2002), pp. 2737-2756. 139. G.F. Vander Voort, Metallography principles and practice, McGraw-Hill, New York, (1984), p. 426. 140. M. Avedesian and H. Baker: Magnesium and magnesium alloys, ASM Specialty Handbook, ASM, Metals Park, Ohio, (1999), pp.66-77. 141. A. Yamamoto, A. Watanabe, K. Sugahara, S. Fukumoto and H. Tsubakino, Deposition coating of magnesium alloys with pure magnesium, JIM., 42 (2001), pp. 1237-1242. 142. A. Yamamoto, A. Watanabe, K. Sugahara, H. Tsubakino and S. Fukumoto, Improvement of corrosion resistance of magnesium alloys by vapour deposition, Scripta Mater., 44 (2001), pp. 1039-1042. 143. D.M. Seeger, C. Blawert, W. Dietzel, Y. Bohne, S. Mandl and B. Rauschenbach, Comparison of as-cast and plasma deposited commercial magnesium alloy, In: N.R. Neelameggham, H.I. Kaplan and B.R. Powell, editors., Magnesium Technology 2005, TMS Annual Meeting (The Minerals & Materials Society), San Francisco, USA;2005. pp. 323-328. 144. M.G. Fontana, Corrosion engineering, 3rd ed., McGraw-Hill, New York, (1986), pp. 482-504. 145. D.A. Jones, Principles and prevention of corrosion, 2nd ed, Prentice Hall, Englewood Cliff (NJ), (1996), pp. 168-198. 146. R.H. Petrucci, W.S. Harwood, F.G. Herring, General Chemistry, 8th ed., Prentice-Hall Inc., New Jersey, (2002), pp. 872-905. 147. J.K. Lin, C.L. Hsia and J.Y. Uan, Characterization of Mg,Al-hydrotalcite conversion film on Mg alloy and Cl-and CO32- anion-exchangeability of the film in a corrosive environment, Scripta Mater., 56 (2007), pp. 927-930. 148. J.Y. Uan, C.F. Li and B.L. Yu, Characterization and improvement in corrosion performance of a hot-chamber diecast Mg alloy thin plate by the removal of interdendritic phase at die chill layer, submitted to Metall. Mater. Trans. A, (E-TP-06-472-AR). 149. R.G. Buchheit, H. Guan, S. Mahajanam and F. Wong, Active corrosion protection and corrosion sensing in chromate-free organic coating, Prog. Org. Coat., 47 (2003), pp. 174-182 150. H.N. McMurray and G. Williams, Inhibition of filiform corrosion on organic-coated aluminum alloy by hydrotalcite-like anion-exchange pigments, Corrosion-NACE, 60 (2004), 219-228.
摘要: 中文摘要 鎂合金之顯微組織是影響其腐蝕性質之重要因素之一,然而目前有關以熱室壓鑄法所壓鑄之目前3C產品較常使用之輕薄短小的AZ91D鎂合金薄板,因凝固速率不同而造成試片表面快速凝固層與試片中間之顯微組織的差別,以及此顯微組織之差異對於其腐蝕性質之影響仍無深入之報導。基於此,本研究以熱室壓鑄法所壓鑄之厚度約1.4 mm之AZ91D鎂合金薄板為實驗材料,探究其表面快速凝固層之顯微組織以及其腐蝕性質。本研究以TEM與SEM觀察試片表面快速凝固層之顯微組織,研究結果顯示表面快速凝固層有兩層不同之組織。第一層位於試片極表面之表面急冷區,此表面急冷區是由等軸與柱狀之α-Mg以及細小顆粒狀之Al12Mg17相(β phase)所組成。第二層則由α-Mg與顆粒狀或不連續之Al12Mg17相(β phase)以及圍繞於Al12Mg17相(β phase)周圍之表面體積率約為16.9 ± 2.7 %之連續網絡狀共晶α相(Al-rich-α phase)所構成。試片中間之顯微組織則明顯與表面快速凝固層之顯微組織不同,其顯微組織為α-Mg相與連續網絡狀Al12Mg17相(β phase)以及表面體積率約8.0 ± 1.4 %之共晶α相(Al-rich-α phase)所組成。在腐蝕性質方面則發現表面之快速凝固層之腐蝕速率高於將表面快速凝固層磨除後之試片中間,而造成此現象之原因為表面快速凝固層中之Al12Mg17相(β phase)為顆粒狀以及表面快速凝固層中之共晶α相(Al-rich-α phase)體積率高於試片中間。 根據上述之實驗結果得知,將熱室壓鑄法所壓鑄之AZ91D鎂合金薄板之表面快速凝固層磨除,可增加其抗蝕性質。然而磨除表面需耗費加工之時間,故本研究發展無廢液以及有利於鎂合金回收之鎂合金表面綠色防蝕鍍層。鎂合金表面處理有陽極處理、化成處理以及金屬鍍層,上述方法是將較鎂合金基材惰性之皮膜或金屬層生成於鎂合金表面,以增加其抗蝕能力。而惰性之皮膜或金屬鍍層如有缺陷時,容易造成基材局部腐蝕。鎂合金表面綠色防蝕鍍層研究的第一個子題是以物理蒸鍍法將99.9 %純鎂蒸鍍於AZ91D鎂合金表面,利用AZ91D鎂合金表面之純鎂膜活性較大之特性來犧牲保護AZ91D鎂合金基材。由於以純鎂蒸鍍於鎂合金表面上,因此在回收鎂合金時,不需將表面之鍍層去除。另一方面,本研究是以活性較大之純鎂膜來達到犧牲保護鎂合金,可改善基材局部腐蝕的發生。顯微組織結果顯示,隨著加熱電流之增加純鎂膜之緻密性與厚度亦隨之增加。極化實驗則發現純鎂膜有較AZ91D鎂合金基材易腐蝕之性質,純鎂膜腐蝕電位約在-1.66 ~ -1.7 V/Ag/AgCl;而AZ91D鎂合金基材之腐蝕電位則比3N純鎂膜較惰性,約為-1.45 V/Ag/AgCl。經過鹽霧實驗結果顯示,純鎂膜皆能夠以犧牲陽極保護法使AZ91鎂合金基材之腐蝕速率下降。純鎂膜試片浸置在pH=7.5之3.5 wt.% NaCl溶液中24小時後,其犧牲保護之試片表面沒有腐蝕班點;而沒有純鎂膜犧牲保護之試片表面有嚴重腐蝕現象。 純鎂膜是以犧牲陽極之角色來犧牲保護基材,而鎂合金於腐蝕環境中,由於其活性較一般常用之金屬大,因此如欲與其他金屬接合使用時,會因電位差而產生伽凡尼腐蝕。本研究以仿生法於AZ91D鎂合金基材浸置於50ºC之Ca2+/HCO3-溶液中12小時,使其表面生成與天然生物材料鮑魚外殼之橫截面組織(無機-碳酸鈣aragonitic CaCO3/有機層)相似之無機-碳酸鈣aragonitic CaCO3/有機-Mg,Al-hydrotalcite複合層。伽凡尼實驗結果顯示AZ91D鎂合金表面有aragonitic CaCO3層電化學實驗結果顯示,表面生成aragonitic CaCO3/ Mg,Al-hydrotalcite層之AZ91D鎂合金試片之腐蝕電流密度(Icorr)約7~10 µA/cm2明顯低於AZ91D鎂合金基材之腐蝕電流密度(150 µA/cm2)。鎂合金表面之aragonitic CaCO3層有天然生物材料自我組裝與自我修復之特點,當aragonitic CaCO3/ Mg,Al-hydrotalcite層如有破損時,可於Ca2+/HCO3-溶液中12小時,使其表面生成與天然生物材料鮑魚外殼之橫截面組織(無機-碳酸鈣aragonitic CaCO3/有機層)相似之無機-碳酸鈣aragonitic CaCO3/有機-Mg,Al-hydrotalcite複合層。伽凡尼實驗結果顯示AZ91D鎂合金表面有aragonitic CaCO3層電化學實驗結果顯示,表面生成aragonitic CaCO3/ Mg,Al-hydrotalcite層之AZ91D鎂合金試片之腐蝕電流密度(Icorr)約7~10 µA/cm2明顯低於AZ91D鎂合金基材之腐蝕電流密度(150 µA/cm2)。鎂合金表面之aragonitic CaCO3層有天然生物材料自我組裝與自我修復之特點,當aragonitic CaCO3/ Mg,Al-hydrotalcite層如有破損時,可於Ca2+/HCO3-溶液中自我修復,重新生成aragonitic CaCO3/ Mg,Al-hydrotalcite層於破損區域。aragonitic CaCO3層形成可分為兩階段,第一階段為橫向生長階段;第二階段為增加厚度階段。於第一階段,aragonitic CaCO3/ Mg,Al-hydrotalcite於鎂合金表面形成連續層,其形成之機制為藉由鎂合金其本身於Ca2+/HCO3-溶液中腐蝕所產生之鎂離子,而促使aragonitic CaCO3顆粒橫向生長,直到於AZ91D鎂合金基材表面形成aragonitic CaCO3層。而aragonitic CaCO3層完全覆蓋於AZ91D鎂合金基材表面後,aragonitic CaCO3層之厚度開始增加。
ABSTRACT Metallurgical factors that may affect the corrosion characteristics of die-cast Mg alloys include the microstructure and the chemical composition. Corrosion performance of a specified alloy with a specific composition (such as AZ91D) is determined by its microstructure. Corrosion properties of hot-chamber die casting thin plate (e.g., 1.4 mm thick in present study) was addressed briefly in previous studies. Hence in this study, the corrosion of hot-chamber die cast AZ91D thin plate (1.4 mm in thickness) was investigated in terms of its microstructure, to elucidate the role of die chill skin in corrosion. The die chill skin composed of a thin layer of chill zone and a thick layer of interdendritic Al-rich-α Mg/Al12Mg17 β particles/α-Mg grains composite microstructures. The chill zone had fine columnar and equiaxed grains and contained a distribution of sub-micro Mg-Al-Zn intermetallic particles. Beneath the chill zone, Al12Mg17 β particle was irregularly shaped but did not have an interdendritic network morphology. Furthermore, Al-rich-α phase (also known as eutectic α) was in the interdendritic network, which occupied a higher volume fraction than the β phase in the die skin layer. Corrosion characteristics were studied via constant immersion and electrochemical tests. The sample without the die skin on surface corroded more slowly. The inferior corrosion performance of die skin was considered to be related to particle-like β phase independ¬ently distributing in die skin and the high volume fraction of the interdendritic network of Al-rich-α phase contained in the die skin, owing to the high cooling rate during solidification. The Al-rich-α phase does not increase the corrosion resistance of the AZ91D alloy. The above results showed that the sample without the die skin had superior corrosion resistance. It must spend time on the removing of the die skin layer. Hence, the purpose of the following study is to develop the eco-coating process for the Mg alloy to protect from corrosion. The coatings on magnesium alloy usually act as a corrosion barrier to the environment. However, the coating must be crack free for applications otherwise the substrate material under the crack becomes local anode, leading to severe local corrosion. In the first topic of the eco-coating process for the Mg alloy, magnesium film was deposited on AZ91D specimen, acting as a sacrificial anode. The corrosion properties of the Mg-film coated specimen were estimated by electrochemical polarization experiments and constant immersion tests, both in 3.5% NaCl solution. Resistively heated tungsten coil heating system was used for vaporizing source. The Ecorr values of the coated specimens were -1.66 ~ -1.7 V/Ag/AgCl, which was evidently lower than that of the AZ91D substrate (-1.45 V/Ag/AgCl). According to the electrochemical analyses, the magnesium coating could be used as a distributed sacrificial anode, cathodically protecting the AZ91D substrate. Immersion tests showed that the uncoated specimen was severely corroded while the Mg film-coated specimen was well protected by the sacrificial anode of the magnesium film. Mg alloy is prone to galvanic corrosion because most other metals have a nobler electrochemical potential than Mg alloy. Hence, the second topic of the eco-coating process for the Mg alloy was that the biomimetically synthesized corrosion-resistant coating on Mg alloy. Abalone shell (aragonitic CaCO3) formed in seawater, which naturally has substantial corrosion endurance in chloride solution. Mg-Al-Zn (AZ91D) sample was treated in aqueous Ca2+/HCO3- at 50ºCfor aragonitic CaCO3/Mg,Al-hydrotalcite coating. The CaCO3/Mg,Al-hydrotalcite coating greatly improved Mg alloy's galvanic corrosion resistance. Electrochemical tests showed that the Icorr values of the coated Mg sample was 7~10 µA/cm2, which was evidently lower than that of the AZ91D substrate. Self-healing of the CaCO3/Mg,Al-hydrotalcite coating deteriorated by scribing occurred. Not only the coating but also the corrosion performance of the coating could be re-healed. A two-stage process of the aragonitic CaCO3 growth on Mg alloy was reported, i.e., lateral growth stage and thickening stage. The former leaded to a continuous CaCO3 thin film covering on Mg sample. That is, Mg2+ ions, which came form Mg alloy surface due to self corrosion in aqueous Ca2+/HCO3-, induced CaCO3 to preferentially grow along sample surface until the sample was totally covered. Subsequently, the later stage caused the thickening of the coating.
URI: http://hdl.handle.net/11455/11217
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.