Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11223
標題: P-型二氧化銅鋁薄膜之微結構與光電性質研究
Microstructure and optoelectronic properties of p-type CuAlO2 thin films
作者: 游瑞松
Yu, Ruei-Sung
關鍵字: TCOs
透明導電氧化物
CuAlO2
Microstructure
optoelectronic properties
二氧化銅鋁
微結構
光電性質
出版社: 材料工程學系所
引用: References of Chapter 1 1. N. D. Popovich, S. S.Wong, S. Ufer, V. Sakhrani, and D. Paine, J. Electrochem. Soc., 150 (2003) H255. 2. K. Nomura, N. Shibata, and M. Maeda, J. Electrochem. Soc., 149 (2002) F76. 3. H. Matsui, H. Saeki, H. Tabata, and T. Kawai, J. Electrochem. Soc., 150 (2003) G508. 4. C. J. Tun, J. K. Sheu, M. L. Lee, C. C. Hu, C. K. Hsieh, and G. C. Chi, J. Electrochem. Soc., 153 (2003) G296. 5. D. H. Park, Y. H. Cho, Y. R. Do, and B. T. Ahn, J. Electrochem. Soc., 153 (2006) H63. 6. H. G. Hong, J. O. Song, S. H. Kim, T. Lee, and T. Y. Seong, J. Electrochem. Soc., 153 (2006) G922. 7. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature, 389 (1997) 939. 8. B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys. Rev. B, 64 (2001) 155114. 9. K. Ueda, T. Hase, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, and M. Hirano, J. Appl. Phys., 89 (2001) 1790. 10. A. Kudo, H. Yanagi, H. Hosono, and H. Kawazoe, Appl. Phys. Lett., 73 (1998) 220. 11. H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS Bull., 25 (2000) 28. 12. H. Yanagi, S. I. Inoue, K. Ueda, H. Kawazoe, and N. Hamada, J. Appl. Phys., 88 (2000) 4159. 13. H. Gong, Y. Wang, and Y. Luo, Appl. Phys. Lett., 76 (2000) 3959. 14. A.N. Banerjee, C.K. Ghosh, and K.K. Chattopadhyay, Solar Energy Materials & Solar Cells, 89 (2005) 75. 15. A.N. Banerjee, R. Maity, C.K. Ghosh, and K.K. Chattopadhyay, Thin Solid Films, 474 (2005) 261. 16. Y. Wang and H. Gong, Chem. Vap. Deposition, 6 (2000) 285. 17. P. Kofstand, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides. Wiley-Interscience, New York, 1972, p.19. 18. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. lwata, K. Matsubara, R. Hunger, and S. Niki, Appl. Phys. Lett., 79 (2001) 4139. 19. A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, and M. Dworzak, Phys. Status Solid B, 234 (2002) R7. 20. H. Matsui, H. Saeki, T. Kawai, H. Tabata, and B. Mizobuchi, J. Appl. Phys., 95 (2004) 5882. 21. J. G. Lu, Z. Z. Ye, F. Zhuge, B. H. Zhao, and L. P. Zhu, Appl. Phys. Lett., 85 (2004) 3134. 22. Y. Nakano, T. Morikawa, T, Ohwaki, and Y.Taga, Appl. Phys. Lett., 86 (2005) 132104. 23. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, 293 (2001) 269. 24. Y. Nosaka, M. Matsushita, J. Nishino, and A. Y. Nosaka, Sci. Technol. Adv. Mater., 6 (2005) 143. 25. J. E. Clayton, D. P. Cann, and N. Ashmore, Thin Solid Films, 411 (2002) 140. 26. M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett., 79 (2001) 2028. References of Chapter 2 1. K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: sputtering of compound materials, William Andrew Pub, New York, 2004, p.39, 19. 2. B.U. Koehler, M. Jansen, and Z. Anorg, Allg. Chem., 543 (1986) 73. 3. R. Shannon, D. Rogers, and C. Prewitt, Inorg. Chem., 10 (1971) 713. 4. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature, 389 (1997) 939. 5. H. Yanagi, S. I. Inoue, K. Ueda, H. Kawazoe, and N. Hamada, J. Appl. Phys., 88 (2000) 4159. 6. H. Gong, Y. Wang, and Y. Luo, Appl. Phys. Lett., 76 (2000) 3959. 7. A.N. Banerjee, R. Maity, and K.K. Chattopadhyay, Materials Letters, 58 (2003) 10. 8. A.N. Banerjee, S. Kundoo, and K.K. Chattopadhyay, Thin Solid Films, 440 (2003) 5. 9. S. Gao, Y. Zhao, P. Gou, N. Chen, and Y. Xie, Nanotechnology, 14 (2003) 538. 10. A.N. Banerjee, C.K. Ghosh, and K.K. Chattopadhyay, Solar Energy Materials & Solar Cells, 89 (2005) 75. 11. A.N. Banerjee, R. Maity, C.K. Ghosh, and K.K. Chattopadhyay, Thin Solid Films, 474 (2005) 261. 12. B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys. Rev. B, 64 (2001) 155114. 13. S. K. Misra and A. C. D. Chaklader, J. Am. Ceram. Soc., 46 (1963) 509. 14. K. T. Jacob and C. B. Alcock, J. Am. Ceram. Soc., 58 (1975) 192. 15. A. M. M. Gadalla and J. White, J. Br. Ceram. Soc., 63 (1964) 39. 16. R. E. Stauber, P-Type Transparent Conducting Oxides, University of Colorado at Boulder press, 2003, p.41. 17. C. Kittel, Introduction to Solid State Physics, 6th, Wiely, New York, 1986, p.183. 18. R. E. Hummel, Electronic Properties of Materials, 2th, Springer Verlag, New York, 1993, p.107. 19. Y. Pauleau, Vacuum, 61 (2001) 175. 20. M. D. Thouless, Thin Solid Films, 181 (1989) 397. 21. Z. B. Zhao, J. Hershberger, S. M. Yalisove, and J. C. Bilello, Thin Solid Films, 415 (2002) 21. 22. A. K. Sinha and T. T. Sheng, Thin Solid Films, 48 (1977) 117. 23. R. Koch, J. Phys.: Condens. Matter., 6 (1994) 9519. 24. L. Lian and N. R. Sottos, J. Appl. Phys., 95 (2004) 629. References of Chapter 3 1. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Boston, 1978, p.87. 2. D. B. Williams and C. B. Carter, Transmission Electron Microscopy, Plenum Press, New York, 1996, p.297. 3. J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall. Inc., Englewood Cliffs, NJ, 1971, p.34. 4. G. G. Stoney, Proc. Royal. Society. Lond. A, 82 (1909) 172. References of Chapter 4 1. K. Tonooka, K. Shimokawa, and O. Nishimura, Thin Solid Films, 411 (2002) 129. 2. N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizu, K. Kato, and F. Kaneko, J. Phys. Chem. Solids, 64 (2003) 1671. 3. J. H. Shy and B. H. Tseng, J. Phys. Chem. Solids, 66 (2005) 2123. 4. M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett., 79 (2001) 2028. 5. K. Koumoto, H. Koduka, and W. S. Seo, J. Mater. Chem., 11 (2001) 251. 6. J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall. Inc., Englewood Cliffs, NJ, 1971, p.34. 7. D. S. Kim and S. Y. Choi, Phys. Stat. sol., 15 (2005) 167. 8. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, Oxford, New York, 1979, p.288. 9. R. B. Kale and C. D. Lokhande, Semicond. Sci. Technol., 20 (2005) 1. 10. S. Gao, Y. Zhao, P. Gou, N. Chen, and Y. Xie, Nanotechnology, 14 (2003) 538. 11. T. Dittrich, L. Dloczik, T. Guminskaya, M. C. Lux-steiner, N. Grigorieva, and I. Urban, Appl. Phys. Lett., 85 (2004) 742. 12. C.H. Ong and H. Gong, Thin Solid Films, 445 (2003) 299. 13. S. Agilan, D. Mangalaraj, S. K. Narayandass, and G. M. Rao, Physica B, 365 (2005) 93. 14. P. Kofstand, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, Wiley-Interscience, New York, 1972, p.19. 15.A. W. Metz, J. R. Ireland, J. G. Zheng, R. S. M. Lobo, Y. Y. Jun, J. Ni, C. L. Stern, V. P. Dravid, N, Bontemps, C. R. Kannewurf, K. R. Poeppelmeier, and T. J. Marks, J. Am. Chem. Soc., 126 (2004) 8477. 16. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting transparent thin films, Inst. of Physics Pub, Philadelphia, 1995, p.181. 17. E. Burstein, Phys. Rev., 93 (1954) 632. 18. T. S. Moss, Proc. Phys. Soc., B67 (1964) 775. 19. T. Maruyama, Jpn. J. Appl. Phys., Part 1 37 (1998) 4099. 20. I. Costina and R. Franchy, Appl. Phys. Lett., 78 (2001) 4139. 21.W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramic, Wiley, New York, 1976, p.888. 22. T. L. Thompson and J. T. Yates, Chem. Rev., 106 (2006) 4428. 23. N. Serpone, J. Phys. Chem. B, 110 (2006) 24287. 24. G. G. Stoney, Proc. R. Soc. Lond. A, 82 (1909) 172. 25. T. Ishiguro, N. Ishizawa, N. Mizutani, and M. Kato, J. Solid State Chem., 41 (1982) 132. 26. C. A. Swenson, J. Phy. Chem. Ref. Data, 12 (1983) 179. 27. B. C. Martin, C. J. Tracy, J. W. Mayer, and L. E. Hendrickson, Thin Solid Films, 271 (1995) 64. 28. B.U. Koehler, M. Jansen, and Z. Anorg, Allg. Chem., 543 (1986) 73. 29. R. Shannon, D. Rogers, and C. Prewitt, Inorg. Chem., 10 (1971) 713. 30. S. Boudin, C. Felser, and F. Studer, Solid State Sci., 5 (2003) 741. 31. T. Nishidat, S. Kubuki, M. Shibata, Y. Maeday, and T. Tamaki, J. Mater. Chem., 7 (1997) 1801. 32. J. Robertson, P. W. Peacock, M. D. Towler, and R. Needs, Thin Solid Films, 411 (2002) 96.
摘要: 本研究利用直流反應濺鍍法以及於控制氬氣氛下退火處理製備P-型二氧化銅鋁薄膜,藉以研究P-型二氧化銅鋁薄膜之結構、光學與電學性質。 隨著退火溫度的改變,銅-鋁-氧薄膜展現出顯著之結構改變和不同光電性質,X光繞射證實氧化銅(CuO) 及四氧化銅二鋁(CuAl2O4) 為反應中間相,二氧化銅鋁單相生成於退火溫度大於800℃時,高解析穿透式電子顯微鏡之斷面結構分析顯示銅-鋁-氧薄膜的結晶行為屬於向外模式,800℃退火處理的二氧化銅鋁薄膜具有較佳光電性質,薄膜表面形貌為細胞狀,其晶粒尺寸約為20到 100 nm,二氧化銅鋁薄膜直接能隙值為3.11 eV,霍爾效應量測顯示二氧化銅鋁薄膜屬於P-型導電,其載子濃度為4.81×10e16 cm-3,而導電率為3.8×10e-2 (Ωcm)-1。銅-鋁-氧薄膜的光電性質主要受Delafossite結構之二氧化銅鋁相所支配控制。 本研究開發ㄧ項新穎性技術,即藉由氮原子摻雜於P-型二氧化銅鋁薄膜內,以增加其載子濃度和導電率。X光電子能譜及光能隙分析顯示氮原子佔據於二氧化銅鋁晶格間隙位置,並且於能隙之間形成一受體雜質能階; 研究同時也發現氮摻雜於P-型二氧化銅鋁薄膜內,當氮原子摻雜量達到 1.1 at. %時有較佳導電性質,和未摻雜的二氧化銅鋁薄膜相互比較,氮摻雜於二氧化銅鋁薄膜後,薄膜的載子濃度從4.81×10e16 cm-3增加至2.13×10e17 cm-3,而導電度從3.8×10e-2 (Ωcm)-1增加至5.4×10e-2 (Ωcm)-1。 藉由氮摻雜於二氧化銅鋁薄膜成長於矽基材上之研究,證實Delafossite結構二氧化銅鋁具有異向性殘留壓應力釋放行為,實驗證實二氧化銅鋁薄膜欲釋放內部殘留壓應力,氧化銅會異常析出突起生長於薄膜表面。由於Delafossite二氧化銅鋁本身具有異向性結構,所以其殘留壓應力釋放首先是藉由在結構中之啞鈴狀的氧-銅-氧層上的原子鍵結破斷,然後銅及氧原子擴散發生在銅原子緻密堆積層上的a-軸方向,分析證實橫跨越AlO6八面體層的c-軸方向上具有較大的殘留壓應力之阻抗能力。
The p-type CuAlO2 films were prepared by dc reactive sputtering technique and annealed under controlled Ar atmosphere. The structural, optical, and electrical properties of the p-type CuAlO2 films were studied. The annealed Cu-Al-O films showed marked structural changes and differing optoelectronic properties with varying annealing temperature. Results of X-ray diffraction demonstrated that CuO and CuAl2O4 were the intermediate reaction phases. XRD also showed that phase grown above 800℃ annealing temperature was pure CuAlO2 phase. Cross-sectional high-resolution transmission electron microscope revealed that the crystallization behavior of the Cu-Al-O films belonged to an outward model. The optimum properties of delafossite structure CuAlO2 film was attained after annealing at 800℃. The surface morphology of CuAlO2 had a cell-like surface appearance and the grain sizes were approximately 20 to 100 nm. The optical direct band gap of the CuAlO2 film was estimated to be 3.11 eV. Hall effect measurements revealed that the CuAlO2 film belonged to the p-type conduction category, with a carrier concentration of 4.81×10e16 cm-3 and the conductivity of 3.8×10e-2 (Ωcm)-1. The optoelectronic properties of the Cu-Al-O system are dominated by the delafossite CuAlO2. This study reports a novel technique for increasing the carrier concentration and the conductivity of the p-type CuAlO2 through doping the material with nitrogen. The X-ray photoelectron spectroscopy and the optical band gap analyses suggested that the nitrogen atoms occupying the interstitial sites of the delafossite structure provided the p-type CuAlO2 with an impurity energy level in the energy gap. It was also found that the N-doped CuAlO2 film had its optimum conduction properties when the dopant level reached 1.1 at. %. Here, the carrier concentration was raised from 4.81×10e16 in the undoped film to 2.13×10e17 cm-3 in the doped film, and the corresponding the film's conductivity was increased from 3.8×10e-2 to 5.4×10e-2 (Ωcm)-1, as compared with the undoped CuAlO2 film. The anisotropic relaxation behavior of the compressive residual stress of delafossite CuAlO2 was identified to take place on silicon substrate, on which the N-doped CuAlO2 film was grown. Experimental results suggest that in order to release the internal compressive residual stress of the CuAlO2 film, CuO hillocks would be favored to grow on the film surface. It was also proposed that because of the structural anisotropic nature associated with the delafossite CuAlO2, the compressive residual stress was released first by breaking the O-Cu-O bonds of the dumbbell layers and subsequently by the diffusion of Cu and O atoms along the a-axis direction on the close-packed Cu layers, suggesting that the c-axis direction across the AlO6 octahedral layers has a greater resistance to compressive residual stress.
URI: http://hdl.handle.net/11455/11223
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.