Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11229
標題: 以磊晶膜轉移技術研製高效率磷化鋁銦鎵與氮化銦鎵發光二極體
Development of High-Efficiency AlGaInP and InGaN Light-Emitting Diodes Using Epilayer Transfer Technology
作者: 黃少華
Huang, Shao-Hua
關鍵字: Epilayer Transfer
磊晶膜移轉
Wafer Bonding
Light-Emitting Diodes (LEDs)
Laser Lift-Off (LLO)
AlGaInP
GaN
Omni-Directional Reflector (ODR)
晶圓接合
發光二極體
雷射剝離
磷化鋁銦鎵
氮化鎵
全方位反射鏡
出版社: 材料工程學系所
引用: [1] N. Holonyak, Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. vol. 1, pp. 82-83, 1962. [2] R. A. Logan, H. G. White and W. Wiegmann, “Efficient green electroluminescence in nitrogen-doped Gap p-n junctions,” Appl. Phys. Lett. vol. 13, pp. 139-141, 1968. [3] Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov and V. D. Rumyantsev, “Internal quantum efficiency (100per cent) of radiative recombination in three-layer AlAs-GaAs heterojunction light-emitting diodes,” Sov. Phys. Semicond. vol. 9, pp. 305-309, 1975. [4] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal and M. G. Craford, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. vol. 57, pp. 2937-2939, 1990. [5] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. vol. 64, pp. 2839-2841, 1994. [6] J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, “GaN blue light-emitting diodes,” J. Lumin, vol. 5, pp. 84, 1972. [7] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. vol. 48, pp. 353-355, 1986. [8] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. vol. 28, pp. L2112-L2214, 1989. [9] S. Nakamura, T. Mukai, M. Senoh and N. Jwasa, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266, 1992. [10] M. G. Craford, “High brightness light emitting diodes,” vol. 48, Academic, San Diego, CA, 1997. [11] D. K. Schroder, “Semiconductor material and device characterization,” New York, Wiley and Sons, 1998. [12] Q. Y. Tong and U. Gosele, “Semiconductor Wafer Bonding Science and Technology,” [13] L. Raleigh, “A study of glass surface in optical contact,” Proc. Phys. Soc. A, vol. 156, pp. 326-349, 1936. [14] S. H. Christiansen, R. Singh, U. Gosele, “Wafer Direct Bonding: From Advance Substrate Engineering to Future Application in Micro/Nanoelectronics,” Proc. of the IEEE, vol. 94, pp. 2060-2106, 2006. [15] C. Christensen and S. Bouwstra, “Eutectic bonds on wafer scale by thin film multilayers,” Proc. of the SPIE, The International Society for Optical Engineering, vol. 2879, pp. 288, 1996. [16] C. den Besten, R. E. G. van Hal, J. Munoz and P. Bergveld, “Polymer bonding of micro-machined silicon structures,” MEMS' 92, pp. 104, 1992. [17] G. Wallis and D. I. Pomerantz, “Field Assisted Glass-Metal Sealing,” J. Appl. Phys., vol. 40, pp. 3946-3949, 1969. [18] R. Stengl, K. Y. Ahn and U. Gosele, “Bubble-Free Silicon Wafer Bonding in a Non-Cleanroom Environment,” Jpn. J. Appl. Phys., vol. 27, pp. L2364-L2366, 1988. [19] F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces,” Appl. Phys. Lett., vol. 67, pp. 2060-2062, 1995. [20] M. R. Krames, M. Ochinai-Holocomb, G. E. Hoefler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, S. A. Stockman, F. A. Kish and M. G. Craford, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999. [21] R. H. Horng, D. S. Wuu, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett., vol. 75, pp. 3054-3056, 1999. [22] T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel and C. Karnutsch, “Omnidirectional Reflective Contacts for Light-Emitting Diodes,” IEEE Electron Device Lett., vol. 24 pp. 683, 2003. [23] S. Nakamura, M. Senoh, S-I. Nagahama, N. Iwasa, T. Matsushita and T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett., vol. 76, pp. 22-24, 2000. [24] D. Morita, M. Sano, M. Yamamoto, T. Murayama, S. Nagahama and T. Mukai, “High Output Power 365 nm Ultraviolet Light Emitting Diode of GaN-Free Structure,” Jpn. J. Appl. Phys., vol.41, pp. L1434-L1436, 2002. [25] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer and M. Stutzmann, “Optical patterning of GaN films,” Appl. Phys. Lett., vol. 69, pp. 1749-1751, 1996. [26] W. S. Wong, T. Sands and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett., vol. 72, pp. 599-601, 1998. [27] W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe and N. M. Johnson, ”Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates,” Appl. Phys. Lett., vol. 78, pp. 1198-1200, 2001. [28] C. F. Chu, C. C. Yu, H. C. Cheng, C. F. Lin and S. C. Wang, “Comparison of p-side down and p-side-up GaN light-emitting diodes fabricated by laser lift-off,” Jpn. J. Appl. Phys., vol. 42, pp. L147-L150, 2003. [29] W. S. Wong, Y. Cho, E. R. Weber, T. Sands, K. M. Yu, J. Krüger, A. B. Wengrow and N. W. Cheung, “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off,” Appl. Phys. Lett., vol. 75, pp. 1887-1889, 1999. [30] M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Gorgens, O. Ambacher, and M. Stutzmann, “Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy ,” Jpn. J. Appl. Phys., vol. 38, pp. L217-L219, 1999. [31] M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh and M. Stutzmann, “Optical process for liftoff of group III-nitride film,” Phys. Stat. Sol. A, vol. 159, pp. R3, 1997. [32] P. R. Tavernier, M. C. Hansen, S. P. DenBaars and D. R. Clarke, “GaN LEDs transferred to copper substrates using laser assisted debonding,” J. Electron. Mater., vol. 28, pp. 1003, 1999. [33] Y. -K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish and M. R. Krames, “A vertical injection blue light emitting diode in substrate separated InGaN heterostructures,” Appl. Phys. Lett., vol. 74, pp. 3720-3722, 1999. [34] Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostr,” Appl. Phys. Lett., vol. 74, pp. 3441-3443, 1999. [35] M. K. Kelly, O. Ambacher, R. Dimitrov, H. Angerer, R. Handschuh and M. Stutzmann, “Laser-Processing for Patterned and Free-Standing Nitride Films,” Mat. Res. Soc. Symp. Proc., vol. 482, pp. 973, 1998. [36] L. Tsakalakos and T. Sands, “Epitaxial ferroelectric (Pb, La)(Zr, Ti)O3 thin films on stainless steel by excimer laser liftoff ,” Appl. Phys. Lett., vol. 76, pp. 227-229, 2000. [37] L. Tsakalakos and T. Sands, “Excimer laser liftoff of epitaxial Pb(Zr, Ti)O3 thin films and heterostructures,” Mat. Res. Soc. Symp. Proc., Symposium Y, Ferroelectric Thin Films VIII, 1999. [38] P. R. Tavernier, P. M. Verghese and D. R. Clarke, “Photoluminescence from laser assisted debonded epitaxial GaN and ZnO films,” Appl. Phys. Lett., vol. 74, pp. 2678-2680, 1999. [39] S. Strite and H. Morkoc, “GaN, AlN, and InN: A Review,” J. Vac. Sci. Technol. B, vol. 10, pp. 1237, 1992. [40] S. Nakamura, M. Senoh, and T. Mukai, “Highly p-typed Mg-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phys., vol. 30, pp. L1708-L1711, 1991. [41] C. Kuo, R. Fletcher, T. Osentowski, M. Lardizabal, M. Craford and V. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 57, pp. 2937-2939, 1990. [42] H. Sugawara, M. Ishikawa and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol. 58, pp. 1010-1031, 1991. [43] K. Streubel, N. Linder, R. Wirth and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 321-332, 2002. [44] R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys., vol. 43, pp. L576-L578, 2004. [45] H. Morkoc, “Nitride Semiconductors and Devices”, Springer Berlin, 1999. [46] S. H. Huang, R. H. Horng and D. S. Wuu, “Improvements of n-side-up GaN light-emitting diodes performance by indium-tin-oxide/Al mirror,” Jpn. J. Appl. Phys., vol. 45, pp. 3449-3452, 2006. [47] C. H. Seieh, R. H. Horng, M. F. Huang, D. S. Wuu, W. C Peng, S. J. Tsai and J. S. Liu, “Wafer bonding of 50 mm diameter mirror substrate to AlGaInP light-emitting diode wafer,” Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting LEOS, vol. 2, p 854-855, 2000. [48] R. H. Horng, S. H. Huang, D. S. Wuu and Y. Z. Jiang, “Characterization of large-area AlGaInP/mirror/Si light-emitting diodes fabricated by wafer bonding,” Jpn. J. Appl. Phys., vol. 43, pp. 2510-2514, 2004. [49] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact,” IEEE Photon. Technol. Lett., vol. 16, pp. 1002-1004, 2004. [50] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett., vol. 73, pp. 2953-2955, 1998. [51] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 74, pp. 1275-1277, 1999. [52] R. H. Horng, D. S. Wuu, Y. C. Lien and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 79, pp. 2925-2927, 2001. [53] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, “Low-operation voltage of InGaN-GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer,” IEEE Electron Device Lett., vol. 22, pp. 460-462, 2001. [54] S. H. Huang, R. H. Horng, S. C. Hsu, T. Y. Chen and D. S. Wuu, “Surface texturing for wafer-bonded vertical-type GaN/Mirror/Si light-emitting diodes,” Jpn. J. Appl. Phys., vol. 44, pp. 3028-3031, 2005. [55] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang and R. H. Horng, “High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser lift-off and electroplating techniques,” IEEE Photon. Technol. Lett., vol. 17, pp. 1809-1811, 2005. [56] S. H. Huang, R. H. Horng and D. S. Wuu, “Improvements of n-side-up GaN light-emitting diodes performance by indium-tin-oxide/Al mirror,” Jpn. J. Appl. Phys., vol. 45, pp. 3449-3452, 2006. [57] D. S. Wuu, S. C. Hsu, S. H. Huang, C. C. Wu, C. E. Lee and R. H. Horng, “GaN/Mirror/Si light-emitting diodes for vertical current injection by laser lift-off and wafer bonding techniques,” Jpn. J. Appl. Phys., vol. 43, pp. 5239-5242, 2004. [58] R. H. Horng, C. E. Lee, S. C. Hsu, S. H. Huang, C. C. Wu, C. Y. Kung and D. S. Wuu, “High-power GaN light-emitting diodes with patterned copper substrates by electroplating,” phys. stat. sol. (a), vol. 201, pp. 2786-2790, 2004. [59] R. H. Horng, S. H. Huang, C. C. Yang and D. S. Wuu, “Efficiency improvement of GaN-based LEDs with ITO texturing window layers using natural lithography,” IEEE J. Select. Topics Quantum Electron., vol. 12, pp. 1196-1201, 2006. [60] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Do¨hler and P. Heremans, “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography,” IEEE Trans. Electron Devices, vol. 47, pp. 1492-1498, 2000. [61] I. Schnitzer, E. Yablonovitch, C. Caneau and T. J. Gimtter, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, pp. 2174-2176, 1993. [62] R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Do¨hler, B. Dutta, M. Kuijk, G. Borghs and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett., vol. 79, pp. 2315-2317, 2001. [63] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383-9385, 2003. [64] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE Photonics Technol. Lett., vol. 15, pp. 649-651, 2003. [65] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004. [66] Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. DenBaars, S. Nakamura and E. L. Hu, “Roughening hexagonal surface morphology on laser lift-off (LLO) N-face GaN with simple photo-enhanced chemical wet etching,” Jpn. J. Appl. Phys., vol. 43, pp. L637-L639, 2004. [67] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett., vol. 86, pp. 221101, 2005. [68] L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, J. K. Sheu, “InGaN/GaN MQW LEDs with a low temperature GaN cap layer,” Solid State Electron., vol. 47, pp. 2027-2030, 2003. [69] R. H. Horng, D. S. Wuu, C. H. Seieh, W. C. Peng, M. F. Huang, S. J. Tsai and J. S. Liu, “Wafer bonding of 50-mm-diameter mirror substrates to AlGaInP light-emitting diode wafers ,” J. Electron. Mater., vol. 30, pp. 907, 2001. [70] R. H. Horng, D. S. Wuu, W. C. Peng, M. F. Huang, C. H. Seieh and K. C. Lin, “Performance and reliability of wafer-bonded AlGaInP/mirror/Si light-emitting diodes,” Proc. SPIE, vol. 4078, pp. 507, 2000. [71] I. Schnitzer, E. Yablonovitch, C. Caneau and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett., vol. 62, pp. 131-133, 1993. [72] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett., vol. 41, pp. 377-379, 1982. [73] F. A. Kish, D. C. DeFevere, D. A. Vanderwater, G. R. Trott, R. J. Weiss and J. S. Major, “High luminous flux semiconductor wafer-bonded AlGaInP/GaP large-area emitters,” Electron. Lett., vol. 30, pp. 1790-1792, 1994. [74] T. Gessmann, E. F. Schubert, J. W. Graff and K. Streubel, “AlGaInP light-emitting diodes with omni-directional reflecting submount,” Proc. SPIE, vol. 4996, pp. 26, 2003. [75] E. Hong and N. Narendran, “A method for projecting useful life of LED lighting systems,” Proc. SPIE, vol. 5187, pp. 93-99, 2003. [76] T. Mori, T. Kozawa, T. Ohwaki, Y. Yaga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata and M. Koike, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys. Lett., vol. 69, pp. 3537-3539, 1996. [77] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett., vol. 73, pp. 2953-2955, 1998. [78] J. S. Jang and T. Y. Seong, “Electronic transport mechanisms of nonalloyed Pt Ohmic contacts to p-GaN,” Appl. Phys. Lett., vol. 76, pp. 2743-2745, 2000. [79] H. W. Jang, and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 85, pp. 5920-5922, 2004. [80] H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 85, pp. 5920-5922, 2004. [81] D. L. Hibbard, S. P. Jung, C. Wang, D. Ullery, Y. S. Zhao, H. P. Lee, W. So and H. Liu, “Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag,” Appl. Phys. Lett., vol. 83, pp. 311-313, 2003. [82] J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett., vol. 88, pp. 043507, 2006. [83] H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H. Kim, S. N. Lee, C. Sone, Y. Park and T. Y. Seong, “High-Reflectance and Thermally Stable AgCu Alloy p-Type Reflectors for GaN-Based Light-Emitting Diodes,” IEEE Photonics Technol. Lett., vol. 19, pp. 336-338, 2007. [84] V. Adivarahan, A. Lunev, M. A. Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska, “Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices,” Appl. Phys. Lett., vol. 78, pp. 2781-2783, 2001. [85] H. W. Jang, J. H. Son and J. L. Lee, “Highly reflective low resistance Ag-based Ohmic contacts on p-type GaN using Mg overlayer,” Appl. Phys. Lett., vol. 90, pp. 012106, 2007. [86] Y. Wang, and T. L. Alford, “Formation of aluminum oxynitride diffusion barriers for Ag metallization,” Appl. Phys. Lett., vol. 74, pp. 52-54, 1999. [87] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett., vol. 87, pp. 051107, 2005. [88] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars and E. L. Hu, “Removal of thick (>100 nm) InGaN layers for optical devices using band gap selective photoelectrochemical etching,” Appl. Phys. Lett., vol. 85, pp. 762-764, 2004. [89] D. A. Stocker, E. F. Schubert and J. M. Redwing, “Crystallographic wet chemical etching of GaN,” Appl. Phys. Lett., vol. 73, pp. 2654-2656, 1998. [90] T. Mukai, M. Yamada and S. Nakamura, “Current and temperature dependence of electroluminescence of InGaN-based UV/blue/green lightemitting diodes,” Jpn. J. Appl. Phys., vol. 37, pp. L1358-L1361, 1998. [91] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, pp. 2163-2165, 2004.
摘要: 本論文係以磊晶膜轉移技術研發薄膜結構型之高效率發光二極體,在磷化鋁銦鎵(AlGaInP)材料方面,我們將磊晶膜轉移至高散熱之矽(Si)基板上並提供一高反射金屬鏡面,並在金屬接合過程必須在結構中置入適當的金屬阻障層,以保護鏡面來防止矽擴散而影響其鏡面特性,本論文針對不同的金屬阻障層(Pt/Ti, TiN/Ti, TaN/Ta)對發光結構的影響進行探討。實驗證實在此結構中做為反射金屬與歐姆接觸的金鈹合金(AuBe)有重要影響,金屬Be擴散會造成鏡面的反射率下降而導致發光效率降低,經由分析發現選擇Pt/Ti之金屬阻障層能夠使得Be與Pt阻障層產生鍵結以減少對鏡面反射率的影響。在阻障層分別為Pt/Ti、TiN/Ti及TaN/Ta的元件特性方面(晶粒尺寸:300 μm×300 μm),在20 mA時其操作電壓均為2.1 V,但其光強度分別為165 、135及140 mcd (λD=626 nm),再經封裝後量測最佳阻障層Pt/Ti元件之輸出功率為約9 mW,證明此金屬阻障層之鏡面結構能大幅提升原製作在砷化鎵基板之四元紅光發光二極體之外部量子效率。 在氮化鎵(GaN) 材料方面,本論文以晶片接合及雷射剝離技術來製作具高反射鏡面之薄膜結構型發光二極體,分別研製n型與p型氮化鎵朝上之結構,並搭配溼蝕刻的粗化技術來提升發光二極體之取光效率。由於n型朝上(n-side-up)元件具有垂直導通之電極結構,因此在鏡面的選擇上必須要能與p-GaN形成歐姆接觸,在本研究中我們設計出不同的鏡面結構,最後發現NiO/Ag/Ni (2.5/200/100 nm)鏡面經高溫(500 ℃)大氣下退火後,依然能夠得到在大於90%的高反射特性(λD=460 nm),同時能有效降低與p-GaN之接觸電阻值至8.37×10-3 Ω-cm2,對封裝晶粒(1 mm × 1mm)施以20 mA (350 mA) 之電流時,此一垂直導通型且兼具高反射鏡面與表面粗化之薄膜結構型發光二極體,其光輸出功率能達到13 mW (160 mW),相較原始製作在藍寶石基板之水平導通結構其輸出功率僅為4.5 mW,提升近乎三倍。在p型朝上 (p-side-up)之氮化鎵薄膜結構型發光二極體方面,特別需結合全方位入射之高反射鏡面結構,此一結構經過光學模擬軟體設計後其反射率能達到99%以上,在實驗設計上須將p型氮化鎵發光元件經過二次翻轉後黏貼至具全方位高反射鏡面之Si基板上,雖仍為一水平導通結構,但可運用磊晶粗化與濕蝕刻粗化技術來達到雙面粗化(p-GaN及undoped-GaN)效果,此磊晶粗化是利用低溫成長p-GaN使表面產生六角孔洞,本論文並針對此六角孔洞進行模擬,經實驗證實200 nm為成長低溫p-GaN之最佳厚度,其發光效率可提升50%。對小尺寸晶粒(250μm×500μm) 施以20 mA之電流時,原始製作在藍寶石基板之水平導通結構之發光效率僅為23.2% (λD=460 nm),而p型朝上之氮化鎵薄膜結構型發光二極體其發光效率能達28.2%;然而對大尺寸晶粒(1mm×1mm)特性做比較時可發現,其發光效率可由原始19.8%提升至28.9%,因此可知具有薄膜結構之發光二極體對大尺寸晶粒的發光效率有更顯著的提升效果。
This dissertation focused on the design and fabrication of thin-film light-emitting diode (LED) structures on the mirror substrates using the epilayer transfer technology. For the AlGaInP-based matrials, the AlGaInP/mirror/barrier/Si structure with vertical electrodes was fabricated using a wafer bonding technique.The mirror quality after the bonding process was confirmed to be a key issue in obtaining high-efficiency vertical mirror-substrate LEDs. A variety of barrier layer structures (Pt/Ti, TiN/Ti, TaN/Ta) was proposed and incorporated into the mirror structure to preserve the mirror quality. The luminance intensities (λD=626 nm)of the AlGaInP LED chips with various barrier layer structures (Pt/Ti, TiN/Ti, TaN/Ta) were 165, 135 and 140 mcd at 20 mA with similar forward voltages of 2.1 V, respectively. After encapsulation into lamps, the output power of AlGaInP with an optimum mirror structure can reach 9 mW at 20 mA.For the GaN-based materials, both n-side-up and p-side-up LEDs with mirror-substrate structures were fabricated using a combination of wafer bonding, laser lift-off and surface texturing techniques. The effects of Pd, ITO/Al, NiO/Ag, NiO/Ag/Ni, and NiO/Au/Ag mirrors on the n-side-up GaN/mirror/Si LED properties were studied. It was found that the characteristics of the vertical-conducting n-side-up GaN/mirror/Si LEDs with a NiO/Ag/Ni (2.5/200/100 nm) mirror structure showed the best performance than the other mirror ones. After the thermal anneal process (500℃ for 10 min in air),the specific contact resistance of NiO/Ag/Ni to p-GaN can reduce to 8.37×10-3 Ω-cm2 with a reflectivity of 92%. The output power (at 20 mA/350mA) of the n-side-up GaN/mirror/Si LED (13 mW/160 mW, λD=460 nm, chip size: 1 mm× 1 mm) shows nearly three times in magnitude as compared with that of the original GaN/sapphire sample (4.5 mW). On the other hand, the p-side-up GaN LEDs were fabricated using a combination of omni-directional reflector (ODR) and double-sided textured surface (both p-GaN and undoped-GaN) techniques. An Essential Macleod program was used to simulate the optimum thickness of the ODR structure. The reflectivity value of ODR structure used in work can reach 99%. On the top-side textured surface, the p-type GaN with hexagonal cavities was grown under low temperature (LT) conditions using metalorganic chemical vapor deposition. The GaN LED with a suitable LT p-GaN cap layer thickness was also studied. Experimental results indicate that the GaN LED sample with the 200-nm hexagonal cavity GaN layer on the surface exhibits a 50% enhancement in luminance intensity. The luminance efficiency with a small chip size of 250 μm×500 μm can be improved from 23.2 to 28.2% at 20 mA. However, the luminance efficiency with a larger chip size of 1 mm×1 mm can be improved from 19.8% to 28.9%. This indicates that the thin-film structure can enhance the light extraction efficiency of GaN-based LEDs, especially for large chip sizes.
URI: http://hdl.handle.net/11455/11229
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.