Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11233
標題: 利用奈米球微影製備磁性奈米點陣之研究
The Study of Magnetic Nano Dots Array by Nanosphere Lithography
作者: 李宥賢
Li, Yu-Hsien
關鍵字: Nanosphere lithography
奈米球微影
Sm-Co
Fe-Pt
Magnetic nano dots array
釤鈷
鐵鉑
磁性奈米點陣
出版社: 材料工程學系所
引用: [1] Toshio Suzuki, Takanori Kiya, Naoki Honda and Kazuhiro Ouchi, IEEE Trans. Magn. , vol. 36, no.5, 2000. [2] Michael Alex, Alexander Tselikov, Terry McDaniel, Neil Deeman, Thierry Valet, and David Chen, IEEE Trans. Magn. , vol. 37, no.4, 2001. [3] B D Terris and T Thomson, J. Phys. D: Appl. Phys. 38 (2005) R199–R222 [4] 郭博成,磁性技術手冊,中華民國磁性技術協會,2002年7月,169-174 [5]http://www.hitachigst.com/hdd/research/storage/pm/index.html, Hitachi Global Storage Technologies. [6] 張慶瑞、楊志信,磁性技術手冊,中華民國磁性技術協會,2002年7月,175-183。 [7] Alexander Taratorin, Characterization of Magnetic Recording Systems, Chapter1, Guzik Technical Enterprises, 1996. [8] 張志高, “橫向式高密度磁記錄媒體的原理與極限”, 中華民國磁性技術協會會訊, 第二十六期, pp. 11-18, 2000。 [9] Andreas Moser, Kentaro Takano, David T Margulies, Manfred Albrecht, Yoshiaki Sonobe, Yoshihiro Ikeda, Shouheng Sun and Eric E Fullerton , “J. Phys. D:Appl. Phys”, 35, R157, 2002. [10] 何建新,” FePt 奈米微粒之製備與自組裝特性研究”, 碩士論文,清華大學,2004。 [11] Néel, Louis, Compt. Rend., 228,664-666. (1949) [12] B. D. Cullity, “Introduction to Magnetic Materials”,Addison-Wesley, 1972. [13] G. W. Spratt, P. R. Bissell, R.W. Chantrell, E. P. Wohlfarth, J. Magn. Magn. Mater. 75, 309 (1988). [14] J. Frenkel and J. Dorfman, Nature (London) 126, 274 (1930). [15] A.H. Morrish, “The Physical Principles of Magnetism”, Wiley, New York, 1965 [16] R Skomski, “Nanomagnetics”, J. Phys.: Condens. Matter, 15, R841,2003. [17] R.H. Kodama, “Magnetic nanoparticles”, JMMM, 200, 359, 1999. [18] I. M. L Billas, A. Châtelain, W. A. de Heer, Science, 265, 1682, 1994. [19] I. M. L Billas, A. Châtelain, W. A. de Heer, JMMM, 168, 64, 1997. [20] A.J. Freeman, C.L. Fu, S. Ohnishi, M. Weinert, in: R. Feder(Ed.),Polarized Electrons in Surface Physics, World Scientific, Singapore, 1985,pp. 3-66. [21] R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr.,S. Foner, PRL, 77,394, 1996. [22] R.H. Kodama, A.E. Berkowitz, PRB, 59, 6321, 1999. [23] O. Kitakami, H. Sato, M. Tanaka, PRB, 56, 13849, 1998. [24] Y. Labaye, et.al, JAP, 91, 8715, (2002). [25] 李 宗 勳,“光電子激發顯微鏡(X-PEEM)於奈米磁性結構之研究”,碩士論文,成 功 大 學, 2004。 [26] 龍文安,“半導體微影技術”,五南圖書,2004。 [27] 徐昭業,“以奈米球微影術製造鎳鐵陣列之特性研究”,碩士論文,中正大學, 2003。 [28] K. J. Strnat, “Rare-earth- Cobalt permanent Magnets, in Ferromagnetic Materials,” E. P. Wohlfarth, and K. H. J. Buschow, Eds: Elsevier Science Publishers B. V., 1988. [29] K. H. J. Buschow, “New developments in hard magnetic materials ,“ Rep. Prog. Phys., Vol.54, 1991, p.1123. [30] C. P. Luo, and D. J. Sellmyer, “Magnetic and structural studies in sputtered Co/C multilayers, ” IEEE Trans. Magn., Vol.26, 1990, p.2764. [31] B.Zhang, and W.A. Soffa, “Evolution of the soft error rate model Hardy,” IEEE Trans. Magn., Vol.27, 1991, p. 5328. [32] S. Mitani, K. Takannashi, M. Sano, H. Fujimoni, A. Osawa and H.Nakajima, “Perpendicular magnetic anisotropy and magneto-optical Kerr rotation in FePt(001) monoatomic multilayers ,“ J. Magn. Magn. Mat., Vol.148, 1995 , p.163. [33] Kevin R. Coffey, Michael A. Parker, and Kent Howard, ”Effects of Al micro-bumps on the magnetic properties and morphology of CoCrTa/Cr/Al thin films,” IEEE Trans. Magn., Vol.31, 1995, p.2737. [34] 周嵩傑,“以分子束磊晶成長之鐵鉑超晶格多層膜之結構與磁性研究”,碩士論文,中正大學, 2002。 [35] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,p.369 (1996)。 [36] K. Kempa,B. Kimball,J. Rybczynski,Z. P. Huang, “NANO LETTERS”(2003), Vol. 3, No.1, 13-18. [37] J. Rybczynski , U. Ebels , M. Giersig ,”Colloids and Surfaces A: Physicochem. Eng. Aspects 219” (2003) 1 -6. [38] Adam Kosiorek, Witold Kandulski, Hanna Glaczynska, and Michael Giersig, “small” (2005), 1, No. 4, 439 –444. [39] Y Lu and S C Chen, “Nanotechnology”, 14 (2003), 505–508. [40] Shemaiah M. Weekes, Feodor Y. Ogrin, and William A. Murray, Langmuir 2004, 20, 11208-11212. [41] J. Sort, H. Glaczynska, U. Ebels, and B. Dieny, J. Appl. Phys., Vol. 95, No. 11, Part 2(2004). [42] B. D. Terris, D. Weller, L. Folks, J. E. E. Baglin, and A. J. Kellock, J. Appl. Phys., Vol. 87, No. 9, 1 May 2000. [43] Olga Kazakova, Maj Hanson, and Erik B. Svedberg,” IEEE Trans. Magn.”, vol.39, no.5, 2003. [44] Qingyu Xu, Yasuyuki Kageyama, and Takao Suzuki. ” IEEE Trans. Magn.” vol. 41, no. 10, 2005. [45] Q. Y. Xu, Y. Kageyama, and T. Suzuki, J. Appl. Phys. 97, 10K308 (2005). [46] Takeshi Seki, Toshiyuki Shima, Kay Yakushiji, Koki Takanashi, Guo Qing Li, and Shunji Ishio, ” IEEE Trans. Magn.”, vol.41, no.10, 2005. [47] L. J. Qiu, J. Ding, A. O. Adeyeye, J.H.Yin, J. S. Chen, S. Goolaup2, and N. Singh, ” IEEE Trans. Magn.” vol. 43, no. 6, 2007. [48] 李正中, “薄膜光學與鍍膜技術”, 第三版, 藝軒圖書出版社(2002), p.296-303。 [49] 羅吉宗,”薄膜科技與應用”,全華科技圖書股份有限公司,Chap. 2 (2004)。   [50] J. Reece Roth, "Industrial plasma engineering" Institute of Physics Pub., Vol 1 chapter. 6. [51] 行政院國家科學委員會, “真空技術與應用”, 精密儀器發展中心出版, 2001 p.389-398。 [52] David B. Williams and C. Barry Carter, ‘Transmission Electron Microscopy’, Plenum Press, New York and London, 1996. [53] 汪建民,“材料分析”,中國材料科學學會,2004。 [54] 國立中興大學貴重儀器中心2007年場發射掃描式電子顯微鏡(FE-SEM)使用者研討會講義 [55] M. A. Poggi , E. D. Gadsby , L. A. Bottomley , Anal. Chem., 76, 3429 (2004). [56] A 2-d code to calculate the magnetization configuration and its field evolution is described on http:/math.nist.gov/oommf.
摘要: 鑄型化記錄媒體(patterned media)可以降低磁晶粒間的交互作用,減低硬碟中雜訊的產生,配合使用高Ku值的材料,可減緩超順磁效應的發生到較高的記錄密度。奈米球微影具有成本低廉、製備快速,並可產生大面積週期性排列奈米陣列的優點,故本實驗使用奈米球微影來製作具有高Hc值的釤鈷及鐵鉑二元合金奈米點陣列,以及軟磁材料鈷點陣的製備,並探討奈米點的磁區結構及交互作用對點陣磁區分佈的影響。 由實驗結果顯示,使用508nm的奈米球遮罩,可以得到178nm的鐵鉑奈米點陣,點陣在無外加場情況下為多磁區結構,在退火溫度(annealing temperature) 600℃時Hc值可以達到4.42kOe。將10nm鈷薄膜覆蓋於鐵鉑點陣上後,鈷薄膜Hc值有明顯提升,且覆蓋於鐵鉑點陣上之鈷薄膜為單磁區結構,並具有相同之磁矩轉動方向。
Patterned media can reduce the intergranular interaction between the magnetic grain particles. This feature can reduce the noise signal generation in hard disk and if incorporate with high Ku value material can also slacken the superparamagnetism effect to occur and hence obtain a higher recording density. Nanosphere lithography has advantages such as low-cost, high-throughput and can efficiently producing large scale well-ordered 2D periodical arrays in nano-structures. This study using the self- assembly capability of nanosphere to producing high Hc alloy type Sm-Co, Fe-Pt nano dots array and soft magnetic material Co dots. The outcome was then used to analysis the relationship between magnetic nano-particle domain wall structure transformation and intergranular interaction. From the experiment result, it shows that using 508nm nanosphere mask can obtain 178nm Fe-Pt nano dots array. Without external field exertion, the dots array is usually multi-domain structure and with annealing treatment at temperature 600℃, the Hc value can rise to 4.42kOe. The experiment results showed that covering the Fe-Pt dots array with 10nm cobalt thin film can significant increasing the Hc value of the cobalt film which is single domain structure with the same dipole rotation direction.
URI: http://hdl.handle.net/11455/11233
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.