Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11236
標題: 鋁摻雜鐵矽粉末於氮氫混合氣氛熱處理後之特性分析
Characterization of Al-doped FeSi2 Powders Annealed in Forming Gas
作者: 李忠明
Li, Chung-Ming
關鍵字: Thermoelectric
熱電材料
FeSi2
VAR
composition
二矽化鐵
真空電弧熔煉
成份
出版社: 材料工程學系所
引用: 1. 甘明吉、黃肇瑞,“環境材料之發展及應用”,工業材料雜誌,178 期,第173-175 頁 (2001)。 2. Seebeck, T. J, “Magnetic polarization of metals and minerals”, Abhandlungen der Deutschen Akademie der Wissenchaften zu berlin, p. 265 (1822). 3. Peltier, J.C., “Nouvelles experience sur la caloritite des courans electrique”, Ann. Chim., p.371 (1834). 4. Daniel, D.P., “Thermoelectric Phenomena”, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton London New York Washington, D.C., p. 8-10 (1995). 5. 朱旭山,“熱電材料與元件之發展與應用”,工業材料雜誌,220 期,第93-103 頁(2005)。 6. Skrabek, E.A. and McGrew, J.W., “Pioneer 10 and 11 RTG Performance Update”, in Space Nuclear Power Systems 1987, 7,Orbit Book Co., Malabar, Florida, p.587 (1988). 7. Caillat, T., etc, “Zn-Sb alloys for thermoelectric power generation”, Energy Conversion Engineering Conference, IECEC 96., Proceedings of the 31st Intersociety , Vol. 2, p.905-909 (1996). 8. Isoda, I., Shinohara, Y., Imai, Y., Nishida, I.A. and Ohashi, O., Intl Conf. on Thermoelectrics, Proc. 17th, Nagoya, Japan, p.390 (1980). 9. Hesse, J.Z., Angew. Phys., Vol.28, p. 133 (1969). 10. H. Griessmann, A. Heinrich, “Thermolectric Transport Properties, Structure Investigation and Application of Doped FeSi2” Thin Films”,18th Int. Conf. on Thermoelectriscs, p.662-666 (1999). 11. T. Nagasea, I. Yamauchib, I. Ohnakac, “Eutectoid decomposition in rapidly solidified α-Fe2Si5-based thermoelectric”, J. Alloys and Compounds, Vol. 316, p. 212-219 (2001). 12. Stöhrer, U., Voggeberger, R., Wagner, G., and Birkholz, U., “Sintered FeSi2 for thermoelectric power generation”, Energy Convers. Manage., 30 , p. 143 (1990). 13. 朱旭山,“熱電材料與元件之原理與應用”,電子與材料雜誌,22 期,第78-89 頁(2004)。 14. Birkholz, U., GroB, E., Stöhrer, U. Voss, K., Gruden, D.O., and Wurster, W. “Conversion of waste exhaust heat in automobiles using Fesi2-thermoelements” , Proc. 7th Int. Conf. on Thermoelectric Energy Conversion, Rao, K. R., Ed., University of Texas at Arlington, Arlington, Texas, p. 124 (1988). 15. Uemura, K., Mori, Y., Imai, T., Noshida, I., Horie, S., and Kawaguchi, M., “Candle-type protable power source employing iron disilicide thermoelements”, Proc. 8th Int. Conf. on Thermoelectric Energy Conversion, Scherrer, H. and Scherrer, S., Eds., Institute National Polyechnique De loraine, Nancy, France, p. 151 (1989). 16. D. M. Rowe (Ed.) “CRC Handbook of Thermoelectrics”, CRC Press LLC., USA, p. 277 (1995). 17. Umemoto Minour, “Preparation of Thermoelectric β-FeSi2 Doped with Al and Mn by Mechanical Alloying”, Materials Transactions, JIM, Vol.36, No.2, p.373-383 (1995). 18. Takarabe, K., lkai, T. and Mori, Y.,JAP, “Structural Study of FeSi2 Under Pressure”, Journal of Applied Physics, Vol. 96, No. 9, p. 4903-4908 (2004). 19. Piton, J. P. and Fay, M. F., “Sur les changements de phases des alliages de compositions voisiines de FeSi2”, C. R. Acad. Sci. (paris), Vol 266, p. 515, (1968). 20. McNeil, D. J. and Ware, R. M., “Thermoelectric power and resistivity of some transtion metal monosilicides”, Br. J. Appl. Phys., Vol. 15, p. 1517 (1964). 21. Ito Mikio, Nagai Hiroshi, Tanaka Takashi, Katsuyama Shigeru and Majima Kazuhiko, “Effects of Al and Cu Addition on Pressureless Sintering Behavior and Phase Transformation of β-FeSi2”, Material Transactions, JIM, Vol.41, No.7, p.857-864 (2000). 22. T.B. Massalsky (Ed.), “Binary Alloy Phase Diagram”, ASM, p. 1108 (1996). 23. Nikitin, E. N. “Study of temperature dependence of electrical conducivity and thermal EMF of silicides”, Sov. Phys. Tech. Phys., Vol. 3, p. 20, (1958). 24. Kojima, T., Masumoto, K., Okamoto, M., and Nishida., I., “Formation of β-FeSi2 form the sintered eutectic alloy FeSi-Fe2Si5 doped with cobalt”, J. Less-Common Metals, Vol. 159, p. 299 (1990) 25. Sakata, T., Sakai, Y., Yoshino, H., Fuiji, H., and Nishida, I., “Studies on the formation of FeSi2 from the FeSi-Fe2Si5 eutectic”, J. Less-Common Metals, Vol. 61, p. 301 (1978) 26. Isamu Y., Takeshi N., Itsuo, O., “Temperature dependence of β-phase transformation in Cu added Fe2Si5 thermoelectric material”, J. Alloys and Compounds, Vol. 292, p. 181-190 (1999) 27. Wandji, R., Dusansoy, J., and Roques, B., “Preparation et étude du silicure FeSi2β à l’ état mono-crystallin”, C. R. Acad. Sci (Paris), Vol. 267, p. 1587 (1968). 28. A. Heinrich, G. Behr, and H. Griessmann, “Thermoelectric Properties of β-FeSi2 Single Crystals Prepared with 5N Source Material”, 16th Int. Conf. on Thermoelectric, p. 287-290 (1997). 29. Chen, H.Y., Zhao, X.B., Zhu, T.J., Lu, Y.F., Ni, H.L., Muller, E., Mrotzek, A., “Influence of Nitrogenizing and Al-doping on Microstructures and Thermoelectric Properties of Iron Disilicide Materials”, Intermetallics 13, p. 704-709 (2005). 30. Birkholz, U. and Schelm, J., “Mechanism of Electrical Conduction in β-FeSi2”, Phys. Stat. Sol. 27, p. 413-425 (1968). 31. Szymanski, K., Baas, J., Dobrzynski, L., Satula, D., “Magnetic and Mossbauer Investigation of FeSi2-XAlX”, Physica B 225, p. 111-120 (1996). 32. Ellingham H. J. T., J.Soc. Ind. Vol. 63, p. 125 (1944). 33. A. Kohli, C. C. Wang and S. A. Akbar, “Niobium Pentoxide as a Lean-Range Oxygen Sensor”, Sensors and Actuators B, Vol 56, p. 121 (1999). 34. A. J. Moulson, J. M. Herbert, “Electroceramics: Materials, properties, and applications”, Chapman and Hall, p. 160 (1990). 35. 丁南宏,方宏聲,方振洲...等,真空技術與應用,國科會精儀中心,新竹,第451-460 頁(2001)。 36. Alfred Grill, “Cold Plasma in Material Fabrication”, The Institute of Electrical and Electronics Engineers, Inc. New York, p. 24-39 (1994). 37. N. Danson, I. Safi, G. W. Hall, R. D. Howson, “Techniques for the sputtering of optimum indium-tin oxide films on to room temperature substrates”, Surf. Coat. Technol. Vol. 99, p. 147-160 (1998) 38. 張凱棋,“以真空電弧熔煉法製備p型FeSi2-xAlx之相變化及熱電性質之研究”,碩士論文,國立中興大學材料工程所,台中(2005)。 39. Compton, A.H. and Allison, S.K., X-ray in Theory and Experiment, D. Van Nostrand (1954). 40. David R. Gaskell, “Introdudction to the Thermodynamics of Materials”, Taylor & Francis Books Inc, New York, p. 582-583 (2003). 41. F. X. Zhang, S. Saxena, “Phase stability and thermal expansion property of FeSi2”, Scripta Materialia, Vol. 54, p. 1375-1377 (2006) 42. Yoshihito M., Haruhiko U., Yoshikazu T., “Raman spectra for β-FeSi2 bulk crystals“, Thin Solid Films, Vol. 461, p. 165-170 (2004). 43. Hirofumi, K., Yunosuke M., Shiro S. and Takeyo, T., “Synthesis and Properties of Semiconducting Iron Disilicide β-FeSi2”, Jpn. J. Appl. Phys., Vol. 38, p. 5192-5199 (1999).
摘要: 本研究以真空電弧熔煉法製備摻雜 Al 元素於 FeSi2 中,並在還原氣氛下對研磨成粉體的 p 型 FeSi2 進行還原熱處理,使材料相變化為具有半導體性質之β相結構。本研究分別以傅立葉轉換紅外光譜儀、感應耦合電漿質譜分析儀、元素分析儀、X光繞射儀、拉曼光譜儀、粒徑分析儀及場發射掃描式電子顯微鏡等分析儀器,觀察FeSi1.985 Al0.015之成份、結構以及粒徑尺寸等性質,探討不同熱處理溫度與持溫時間對FeSi1.985 Al0.015的成份變化及相變化趨勢的影響。 由FTIR及氧分壓的結果顯示,試片中有SiO2的生成。在EA及ICP-MS的分析中發現,於還原氣氛下熱處理一定時間內能降低雜質,但更長時間的熱處理會使得試片發生氧化以及Al的散失。XRD及Raman的結構分析方面,發現熔煉後的試片內含α及ε相。隨著熱處理之後,試片即轉變為以β相為主的結構。由PCS及FE-SEM中,可得知球磨後的試片呈現機械互鎖的狀態,使得顆粒有團聚的現象。且平均粒徑的變化與XRD中相變化的趨勢一致。
In this study, Al-doped FeSi2 compounds were prepared by using vacuum arc remelting and ball-milling. The p-type FeSi2 compounds were ground into powder, then annealed in forming gas for various times and temperatures to transform into the semiconducting β phase. The composition, structure and particle size properties were characterized by means of inductively coupled plasma-mass spectrometer (ICP-MS), elemental analyzer (EA), X-ray diffractometer (XRD), Raman spectroscopy, Fourier transformation infrared spectroscopy (FTIR), photon correlation spectroscopy (PCS) and field-emission SEM (FE-SEM), respectively. As shown by FTIR, SiO2 formed in agreement with the theoretical prediction. The results in EA and ICP-MS show that annealing in forming gas can reduce the impurity in the powders. However, longer heat treatments cause oxidation and Al loss. From XRD and Raman analyses, the as-prepared samples contain only the α and ε phase. After annealing, the samples transform into the β phase. The PCS and FE-SEM results show that the as-prepared powder exhibit aggregation due to mechanical interlocking. The change of average particle size corresponds to the phase transformation observed in XRD.
URI: http://hdl.handle.net/11455/11236
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.