Please use this identifier to cite or link to this item:
標題: 鈷/鉑多層膜之結構與磁性質之研究
The Structures and Magnetic Properties of Co/Pt Multilayers
作者: 林信儒
Lim, Shin-Ru
關鍵字: Co/Pt
出版社: 材料工程學系所
引用: 參考文獻 [1] S. N. Piramanayagam,a_ H. B. Zhao, J. Z. Shi, and C. S. Mah, Appl. Phys. Lett. 88, 092501 (2006). [2] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. East, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., 36, 10 (2000) [3] D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, second edition, 1992. [4] Robert E. Reed-Hill, “Physical metallurgy principles”, third edition, 1992. [5] T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Master. 266,79(2003.) [6] H. Okamoto, “Binary Alloy Phase Diagrams”, Vol 2, ASM International, 2 nd edition, 1992 [7] Magnetic Nanostructures, edited by Hari Singh Nalwa, Stevenson Ranch, Calif.: American Scientific Publishers, c2002 [8] F. A, Shunk, “Constitution of Binary Alloys,” 2nd ed. McGraw-Hill, New York, 1969. [9] M. Hansen, ““Constitution of Binary Alloys,” 2nd ed. McGraw-Hill, New York, 1958. [10] R. S Bandhu, R. Sooryakumar, R. F. C. Farrow, T. A. Rabedeau, M. F. Toney, and D. Weller, J. Appl. Phys., in press. [11] Ming Li, Zhi-Hong Jiang, Zhi-Qiang Zou, De-Fang Sher, Journal of Magnetism and Magnetic Materials 176 331-226 (1997). [12] S. Mitani, K. Takanashi, H. Nakaima, K. sato, R shreiber, P. Gruberg, and H.Fujimori, J. Magn. Mgn. Master. 156, 7 (1996). [13] S. Mitani, K. Takanashi, M. Sano, H. Fujimori, A. Osawa, and H. H. Nakaima, J. Magn. Mgn. Master. 148,163 (1995). [14] V. Gehanno, R. Haffmann, Y, Samson, A. Marty, and S. Auffret, European Phys. J. B. 10, 457 (1999).. [15] K. Himi, K, Takanashi, S. Mitani, M, Yamaguchi, D. Ping, K. Homo, and H, Fujimori, Appl. Phys. Lett. 78, 1346 (2001). [16] K, Takanashi, S. Mitani, M. Sano, H. Fujimori, H. Nakajima, and A. Osawa, Appl. Phys. Lett. 67, 1016 (1995). [17] S. Rieding, N. Knorr, C. Mathieu, J. Jorzick, S. O. Demokritow, B, Hillebrands, R. Shreiber, and P. Grunberg, J. Magn. Mgn. Master. 198,348 (1999). [18] S. Mitani, K. Takanashi, H. Nakajima, K. Sato, R. Schreiber, P. Grunberg, and H. Fujimori, J. Magn. Magn. Mater. 156, 7(1996). [19] B. M. Lairson and B. M. Clemens, Appl. Phys. Lett. 63, 1438 (1993). [20] D. M Artymowicz, B,. M. Larison, B. M. Clemens, Jounal of Crystal Growth. 169, 83 (1996). [21] Andrew C. C. Yu, M. Mizuno, Y. Sasaki, and H. Kondo, Appl. Phys. Lett. 81, 3768 (2002) [22] V. Karanasos, I. Panagiotopoulos, and D. Niarchos, Appl. Phys. Lett. 88, 5 (2000). [23] P. F. Garcia, D. Coulman, R. S. McLean, M, Reilly, J. Magn. Mgn. Master. 164, 411 (1996). [24] S. Stavroyiannis, I. Panagiotopoulos, and D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, Appl. Phys. Lett. 73, 23 (1998). [25] J. A. Christodoulides,a) Y. Huang, Y. Zhang, and G. C. Hadjipanayis, I. Panagiotopoulos and D. Niarchos, J. Appl. Phys. 87 9 (2000). [26] D. Y.Oh and J. K. Park, J. Appl. Phys. 93 10 (2003). [27] 中興大學材料工程學系碩士論文,鎳鐵/鎳鐵氧化物雙層薄膜之結構及磁性研究,曾譯民,民94年。 [28] 雙離子束濺鍍系統操作手冊. [29] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, (1989). [30] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, Prentice-Hall, Inc., (2001). [31] 汪健民主編,“材料分析”,中國材料科學學會,1998. [32] David B. Williams and C. Barry Carter, ”Transmission Electron Microscopy”, Plenum Press, (1996). [33] David Jiles, ”Magnetism and Magnetic Materials” , Chapman & Hall,1991. [34] S. Foner, Rev. Sci. Instr. 27, 548 (1956). [35] S. Foner, Bull. Am. Phys. Soc. Ser. II. 2, 128 (1957).
摘要: 本研究利用雙離子束濺鍍系統製備[Pt(X nm)/Co(Y nm)/]Z多層薄膜。XRD與TEM分析結果顯示:初鍍膜有Pt(a~3.91Å)與Co相以及L12 CoPt3(a= 3.83 Å)相的存在。由TEM結果得知Pt/Co多層膜之平均晶粒尺寸約為5~10 nm,且矯頑磁力均介於HC=42~85之間,應是hcp Co相與L12 CoPt3相所導致。 Co/Pt多層膜經550 ℃退火6分鐘後,Co/Pt多層膜產生f.c.c CoPt(a~3.70 Å)相,主要由於薄膜間互相擴散導致序化結構之形成。退火後樣品之平均晶粒尺寸介於10~40 nm。磁性分析顯示:[Pt(5nm)/Co(4nm)]2多層膜具有較大之矯頑磁力(Hc~800 Oe),主要由於產生CoPt相所致。而[Pt(1.3nm)/Co(0.5nm)]16多層膜經退火後,軟磁相L12 Co3Pt之生成將導致較小之矯頑磁力(Hc~30 Oe)。 [Pt(5nm)/Co(4nm)]2多層膜於300 ℃以下退火,其結構與初鍍膜相同。當退火溫度於550 ℃以上,fcc CoPt結構生成,且其矯頑磁力明顯增加(Hc~800 Oe),當退火溫度達到650℃以上時,矯頑磁力(Hc~6500 Oe)達到最大值。序化度分析顯示:[Pt(5nm)/Co(4nm)]2在退火溫度700℃時,具有最高序化度(S~0.96)。 [Pt (2.4nm)/Co( 2nm)]10/Pt(30nm)經離子轟擊效應的初鍍膜方面:由XRD研究結果顯示出有fcc Pt(a~3.70 Å)之繞射峰,並在較低之End-Hall voltage轟擊下,會有L12 CoPt3(a~3.8 Å)的伴峰。且Pt之晶格常數隨End-Hall voltage增加而降低,此顯示結構經離子束轟擊後較為緻密。磁滯曲線分析得知:矯頑磁力隨End-Hall voltage增加而降低。 [Pt (2.4nm)/Co( 2nm)]10/Pt(30nm)多層膜經700 ℃退火後,形成CoPt3(a~3.8 Å)。且CoPt3之晶格常數隨End-Hall voltage增加而降低。整體而言經退火處理之後矯頑磁力比初鍍膜小且隨End-Hall voltage增加而降低,顯示離子束轟擊效應會抑制序化相f.c.t CoPt之生成。
A series of Co/Pt multilayers were deposited by using an ion-beam technique. X-ray diffraction and transmission electron microscopy results have shown that as-deposited samples consist of h.c.p. Co and f.c.c. Pt phases. Disordered CoPt3 phases were developed with increasing End-Hall voltage (VEH) that induces greater ion-beam bombardment energy during deposition. This indicates that intermixing of Co and Pt increases with ion-beam bombardment. The coercivities (ranging from 100 Oe to 300 Oe) of Co/Pt multilayers decreased with increasing VEH. After annealing, the formation of CoPt3 was observed in these ion-beam bombarded samples, resulting in lower coercivities (Hc~ 50 Oe). The depressed transition temperature of CoPt3 for films deposited with the largest VEH was attributed to distorted CoPt3 structures that appeared with annealing.
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.