Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11243
標題: Rene 77 鎳基超合金鑄件填銲之研究
Melt-in Fusion Welding of Rene 77 Nickel-Base Superalloy
作者: 吳奕璇
Wu, Yi-Hsuan
關鍵字: Nickel-Base Superalloy
鎳基超合金Rene 77
Rene 77
Rene 41
Melt-in Fusion Welding
Hot cracking
Re-heat cracking
Rene 41
填銲
銲接熱裂紋
再熱裂紋
出版社: 材料工程學系所
引用: 1. 江沛青,“製程條件對Rene’77 鑄造性及組織影響之研究”,義守大學 材料科學與工程學系碩士論文,民國93 年。 2. M. J. Donachie, and Jr., Superalloys Source Book, American Society for Metals, the United States of America, pp.23, 1984. 3. M. J. Donachie, and Jr., Superalloys Source Book, American Society for Metals, the United States of America, pp. 113-114, 1984. 4. C. T. Sims, N. S. Stoloff, and W. C. Hagel, SuperalloysⅡ, Wiley, New York, pp.97-99, 1987. 5. M. J. Donachie, and Jr., Superalloys Source Book, American Society for Metals, the United States of America, pp.80, 1984. 6. 江銘峰,“In939 鎳基超合金之雷射銲接與銲補研究”,國立台灣大學 材料科學與工程學研究所碩士論文,民國94 年。 7. 陳永璋、陳建銘,“鎳基合金之特性與其銲接方法",銲接與切割, 第10 卷,第3 期,第13-26 頁,民國89 年。 8. M. J. Donachie, and Jr., Superalloys Source Book, American Society for Metals, the United States of America, pp.81-92, 114-119, 1984. 9. C. T. Sims, N. S. Stoloff, and W. C. Hagel, SuperalloysⅡ, Wiley, New York, pp.66-68, 99-118, 1987. 10. T. Grosididier, A. Hazotte, and A. Simon, “Precipitation and dissolution processes in γ/γ prime single crystal nickel-based superalloys,” Materials Science and Engineering A, Vol. A256, pp.183-196, 1998. 11. M. Soucail, and Y. Bienvenu, “Dissolution of the γ’ phase in a nickel base superalloy at equilibrium and under rapid heating,” Materials Science and Engineering A, Vol. A220, pp. 215-222, 1996. 12. S. S. Babu, M. K. Miller, J. M. Vitek, and S. A. David, “Characterization of the microstructure evolution in a nickel base superalloy during continuous cooling conditions,” Acta Materialia, Vol. 49, pp. 4149-4160, 2001. 13. R. E. Reed-Hill, and R. Abbaschian, Physical metallurgy principles, PWS-Kent Pub., Boston, pp.532-534, 1991. 14. C. T. Sims, N. S. Stoloff, and W. C. Hagel, SuperalloysⅡ, Wiley, New 82 York, pp.122-129, 1987. 15. C. T. Sims, N. S. Stoloff, and W. C. Hagel, SuperalloysⅡ, Wiley, New York, pp.230-239, 1987. 16. K. P. Gupta, Phase diagrams of ternary Nickel alloys, Publications & Information Directorate, India, pp. 5-17, 1990. 17. M. J. Donachie, and Jr., Superalloys Source Book, American Society for Metals, the United States of America, pp.78-79, 1984. 18. W. Schwenk, and A. F. Trabold, “Weldability of Rene 41,” Welding Journal, Vol.42, No.10, pp.460s-465s, 1963. 19. K. C. Wu, and R. E. Herfert, “Microstructural studies of Rene 41 simulated weld heat-affected zones,” Welding Journal, Vol.46, No.1, pp.32s-38s, 1967. 20. 第一機械工業部哈爾濱焊接研究所,“焊接裂縫金相分析圖譜",黑 龍江科學技術出版社,第1-9 頁,民國70 年。 21. 江家慶、王星豪,“銲接熱裂縫之理論及機制",銲接與切割,第10 卷,第2 期,第41-51 頁,民國89 年。 22. 林旺恩,“銲接熱裂紋探討",機械月刊,第20 卷,第3 期,第165-172 頁,民國83 年。 23. 李崇生,“銲道龜裂的原因及防止",銲接與切割,第2 卷,第5 期, 第24-29 頁,民國81 年。 24. 朱登雄 譯,“銲接龜裂與其防止對策(2)-高溫龜裂",機械月刊, 第15 卷,第10 期,第122-126 頁,民國78 年。 25. 鄭伊洛,“銲道破裂與防止(一)-高溫破裂",銲接與切割,第3 卷, 第1 期,第51-65 頁,民國82 年。 26. 第一機械工業部哈爾濱焊接研究所,“焊接裂縫金相分析圖譜",黑 龍江科學技術出版社,第10-19 頁,民國70 年。 27. W. R. Apblett, and W. S. Pellini, “Factors which influence weld hot cracking,” Welding Journal, Vol. 33, No. 2, pp. 83s-90s, 1954. 28. 第一機械工業部哈爾濱焊接研究所,“焊接裂縫金相分析圖譜",黑 龍江科學技術出版社,第19-27 頁,民國70 年。 29. 鄭伊洛,“銲接破裂與防止(二)-低溫破裂、再熱破裂”,銲接與切 割,第4 卷,第1期,第42-54 頁,民國83 年。 30. 朱登雄 譯,“銲接龜裂與其防治對策(4)-再熱龜裂”,機械月刊,第 83 16 卷,第2 期,第207-212 頁,民國79 年 31. 第一機械工業部哈爾濱焊接研究所,“焊接裂縫金相分析圖譜",黑 龍江科學技術出版社,第34-38 頁,民國70 年。 32. D. McKeown, “Re-heat cracking in high nickel alloy heat affected zone,” Welding Journal, Vol. 50, No. 5, pp. 201s-206s, 1971. 33. L. C. Lim, J-Z. Yi, N. Liu, and Q. Ma, “Mechanism of post-weld heat treatment cracking in Rene80 nickel based superalloy,” Materials Science and Technology, Vol. 18, pp. 407-412, 2002. 34. W. A. Owczarski, D. S. Duvall, and C. P. Sullivan, “A model for heat-affected zone cracking in nickel-base superalloys,” Welding Journal, Vol. 45, No. 4, pp. 145s-155s, 1966. 35. M. J. Donachie, and Jr., Superalloys Source Book, American Society for Metals, the United States of America, pp. 15,376-378, 1984. 36. C. T. Sims, N. S. Stoloff, and W. C. Hagel, SuperalloysⅡ, Wiley, New York, pp.131-132, 1987. 37. R. J. S. Suffern, T. M. Monsey, and M. T. Washingtonville, “Welding high-strength nickel base superalloys,” United States Patent, No. 5374319, 1994. 38. J. E. Franklin, and W. F. Savage, “Stress relaxation and strain-age cracking in Rene 41 weldments,” Welding Journal, Vol. 53, pp. 380s-387s, 1974. 39. R. Thamburaj, J. A. Goldak, and W. Wallace, “The influence of chemical composition on post-weld heat treatment cracking in Rene 41,” SAMPE Quarterly, Vol. 10, No, 4, pp. 6-12, 1979. 40. E. G. Thompson, S. Nunez, and M. Prager, “ Practical solutions to strain-age cracking of Rene 41, " Welding Journal, Vol. 47, pp. 299s-313s, 1968. 41. R. Kayacana, R. Varola and O. Kimillib, “The effects of pre- and post-weld heat treatment variables on the strain-age cracking in welded Rene 41 components,” Materials Research Bulletin, Vol 39, No 14-15, pp.2171-2186, 2004. 42. W. P. Hughes, and T. F. Berry, “A study of the strain-age cracking characteristics in welded Rene 41-Phase Ⅰ,” Welding Journal, Vol. 46, 84 No. 8, pp. 361s-370s, 1967. 43. C. T. Sims, N. S. Stoloff, and W. C. Hagel, SuperalloysⅡ, Wiley, New York, pp. 511-515, 1987. 44. T. Lyman, Metals handbook, American Society for Metals, Metals Park, Ohio, pp. 366-374, 1976. 45. M. J. Donachie, and Jr., Superalloys Source Book, American Society for Metals, the United States of America, pp. 119-120, 1984. 46. O. A. Ojo, N. L. Richards, and M. C. Chaturvedi, “Contribution of constitution liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy,” Scripta Materialia, Vol. 50, pp. 641-646, 2004. 47. J. D. Wang, and D. Gan, “Effects of grain boundary carbides on the mechanical properties of Inconel 600,” Materials chemistry and physics, Vol. 70, pp. 124-128, 2001.
摘要: 鎳基超合金一般含有活性元素,故於澆鑄之後常氧化形成夾渣物,此時需將夾渣物加以挖除,並配合手工惰氣鎢極電弧銲加以修補,然鎳基超合金由於合金元素複雜,經銲接修補後易於銲道與熱影響區生成缺陷,主要為銲接熱裂紋;且於消除銲後殘留應力的熱處理中,於熱影響區形成裂紋,被稱為再熱裂紋。本實驗為採用惰氣鎢極電弧銲配合鎳基超合金Rene41 銲線在鎳基超合金Rene 77 上進行銲接修補,並於銲接後進行於1163℃持溫兩小時之熱處理A 或於1080℃持溫一小時之熱處理B,針對預熱溫度、基材狀況、銲接電流以及冷卻方式進行探討裂紋的生成原因,並比較其顯微結構的差異。銲補完成之試片,分別進行XRD 結晶結構分析、TEM顯微結構鑑定、金相觀察、SEM 顯微結構分析與EDS 半定量分析。 實驗結果顯示,Rene 77 與Rene 41 主要組成的相為γ基地相與γ’析出強化相,主要析出之碳化物為MC 型的TiC。在銲道內部所析出之碳化物,較為細小,主要析出於柱狀晶間,而基材的碳化物,因其於鑄造時析出故較為粗大,主要析出於樹狀晶間。當銲件經熱處理A 或熱處理B 後,基材的γ’相由立方體的邊界開始向四周成長,並有二次的γ’相以圓形析出,銲道則均勻析出圓形的γ’相。在實驗參數方面而言,基材Rene 77 經熱處理A 後,並無法將析出物有效固溶回基材之中,故基材是否經熱處理對於銲接結果並無明顯影響;就金相觀察可以發現,未預熱的試片相對於經預熱的試片而言,在銲接後將出現較大的熱影響區;選用的銲接電流越小,越不易於銲道內部形成裂紋,且減少熱輸入量將可降低銲後之殘留應力;銲後以保溫冷卻的方式冷卻可以減少急冷所造成的殘留應力的影響。但是,利用惰氣鎢極電弧銲進行銲補時,易於熱影響區中產生液化裂紋。銲補之試片經銲後熱處理後,於熱影響區有裂紋產生,此裂紋為應變時效裂紋。若於銲接後熱影響區即存在裂紋,則裂紋將沿著晶界往銲道與基材擴展。
Generally speaking, Nickel-base superalloys contained activity elements.As a result, they are found defects easily as slag entrapment in it. In this situation, we can use melt-in fusion weld to repair these defects and increase the service life of weld piece. However, the elements of nickel-base superalloys are complex, and those elements are harmful during welding. For this reason, it might cause the occurrence of post-weld cracking in welding bead and heat-affected zone. And because of the residual stress in weldment, it would induce reheat cracking during post-weld heat treatment. The welding repair of Rene 77 Nickel alloy was performed using GTAW with Rene 41 welding wire in this investigation. After welding, two heat treatments were employed in this investigation. Heat treatment A was heated to 1163℃ and holding for 2 hrs, and heat treatment B was heated to 1080℃ and holding for 1 hr. The purpose of this study is to discuss the formation of cracking for preheating temperature, condition of base metal, welding current and cooling method. The weldments of welding repair were tested using X-ray diffraction, TEM, OM, SEM, and EDS analysis. Experimental results indicated that the primary phase in Rene 77 and Rene 41 is γ and γ' phase, respectively and the major precipitate carbide is TiC. The carbides in welding bead were small, and they precipitated at the grain boundary of columnar structure. Because the carbides in base metal precipitated in casting, they were bigger than the carbides in welding bead. And they precipitated in the grain boundary of dendritic structures. After heat treatment A or B, the γ' phase in base metal would transfer from cube to surrounding the octodendrite, and the secondary γ' phase would precipitate as sphere. In welding bead, γ' phase would precipitate as sphere. Regarding to experimental parameters, the precipitates could not dissolve to base metal after heat treatment A, so the pretreatment of base metal indicated a slight influence after welding. It exhibited a wider heat-affected zone for without preheating of specimens than with preheated samples. As the welding current was smaller, it would less susceptible to crack in welding bead. And the decrease of heat input could reduce the residual stress in welding. After welding, the slow cooling rate can decrease the residual stress which occurred in rapid cooling. However, it would cause liquation cracking in heat- affected zone using GTAW repair. After post-weld heat treated, it would lead to crack in heat-affected zone. This kind of cracking called as strain-age cracking. If the cracks exist in heat-affected zone after welding and they will propagate from heat-affected zone to welding bead and base metal along grain boundaries.
URI: http://hdl.handle.net/11455/11243
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.