Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11245
標題: 聚苯胺/奈米碳管複合電極材料之製備與特性研究
Preparation and characterization of polyaniline/carbon nanotube composites for electrode materials
作者: 林書正
Lin, Shu-Jeng
關鍵字: fuel cell
燃料電池
polyaniline nanotube
carbon nanotube
聚苯胺奈米管
奈米碳管
出版社: 材料工程學系所
引用: 1.Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L. M. Gan, Langmuir, 2002, 18, 4054. 2.W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun and Q. Xin, J. Phys. Chem. B, 2003, 107, 6292. 3.G. Girishkumar, K. Vinodgopal and Prashant V. Kamat, J. Phys. Chem. B, 2004, 108, 19960. 4.L. Zhang, M. Wan, Thin Solid Films, 2005, 477, 24. 5.Z. Zhang, Z. Wei, M. Wan, Macromolecules, 2002, 35, 5937. 6.Z. Wei, Z. Zhang, M. Wan, Langmuir, 2002, 18, 917. 7.S. Xiong, Q. Wang, H.Xia, Mater. Res., Bull. , 2004, 39, 1569. 8.D.Chapman, R.J. Warm, A.G. Fitzgerald, A.D. Yoffe J. Chem. Soc., Faraday Trans., 1964, 294, 60. 9.H. Shirakawa, S. Ikeda, Polymer, 1971, 2, 231. 10.H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Hegger J. Chem. Soc., Chem. Commum., 1977, 578. 11.B. Wessling, Synth. Met., 1991, 1, 119. 12.G. Harsanyi, Polymer Films in Sensor Applications, 1995, Chap. 3, 209. 13.D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem., 1962, 84, 3618. 14.www.nobel.se/chemistry/laureates/2000/chemadv.pdf 15.J. L. Bredas, B. Themans, J. M. Andre, R. R. Chance, R. Silbey, Synth. Met., 1984, 9, 265. 16.H. Letheby, J. Chem. Soc., 1862, 15, 161. 17.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173. 18.H. Xia, J. Narayanan, D. Cheng, C. Xiao, X. Liu, and H. S. O. Chan, J. Phys. Chem. B , 2005, 109, 12677. 19.C. H. Yang, Y. K. Chih, H. E. Cheng, C. H. Chen, Polymer, 2005, 46,10688. 20.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature, 1985, 318, 162. 21.S. Iijima, Nature, 1991, 354, 56. 22.T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358, 220. 23.S. Iijima, T. Ichihashi, Nature, 1993, 363, 603. 24.D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 1993, 363, 605. 25.M. Ouyang, J. Huang, and C. M. Leiber, Acc. Chem. Res., 2002, 35, 1018 26.H. Dai, Acc. Chem. Res., 2002, 35, 1035. 27.N. Hamada, S Swada, and A. Oshiyama, Phys. Rev. Lett, 1992, 68, 1579. 28.R. Saito. M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Rev. Lett., 1992, 60, 2204. 29.J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 1998, 391, 59. 30.T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature, 1996, 382, 54. 31.M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 1996, 381, 678. 32.E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 1997, 277, 1971. 33.M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, Science, 2000, 287, 637. 34.M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, 1998, 199, 1. 35.J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B, 1999, 59, 2514. 36.S. C. Tsang, Y. K. Chen, M. L. H. Green, Nature, 1994, 372, 159. 37.R. M. Lago, S. C. Tsang, M. L. H. Green, J. Chem. Soc., Chem. Commu., 1995, 13, 1355. 38.J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science, 1998, 280, 1253. 39.J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, and Z. Du., J. Phys. Chem. B, 2003, 107, 3712. 40.江松懋,奈米碳載體於燃料電池應用之研究,屏東科技大學材料工程研究所碩士論文,2005年。 41.F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P-Y. Silvert and K. Tekaia-Elhsissen, NanoStructured Materials, 1999, 11, 1277. 42.M. Chen and Y. Xing, Langmuir, 2005, 21, 9334. 43.林彥文,聚苯胺/奈米碳管導電複合材料之製備與電性研究,國立中興大學材料工程系碩士論文,2004年。 44.M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P. Pouget, X. Tang, A. G. MacDiarmid, Phys. Rev. B, 1989, 39, 12958. 45.P. Anilkumar, M. Jayakannan, Langmuir, 2006, 22, 5952. 46.Y. Yang, M. Wan, J. Mater. Chem., 2002, 12, 897. 47.S. Saravanan, C. Joseph Mathai, M. R. Anantharaman, S. Venkatachalam, P. V. Prabhakaran, Journal of Physics and Chemistry of Solids, 2006, 67, 1496. 48.劉康宇,白金觸媒/奈米碳管電極材料之製備與研究,國立中興大學材料工程系碩士論文,2006年。
摘要: 石化能源經本世紀大量消耗後,存量已出現危機,大量使用石化能源也造成了二氧化碳排放量遠超過地球環境所能負荷。基於能源消耗與環境保護之考量,各種綠色能源之發展受到相當大的重視,其中燃料電池(fuel cell)是極具發展潛力之綠色能源。燃料電池具有在發電過程中零污染、低噪音、高效率等特點,理論上只要供應燃料電池燃料,就可持續供應電力。其中質子交換膜燃料電池(Proton exchange membrane fuel cells , PEMFC)因其電解質為Nafion,具有極佳的質子傳導效率,可提高反應的電流密度,再加上低溫運作的特性,使得PEMFC具有重量輕、體積小、啟動快與機組材料選擇性大等各項優點,可廣泛應用於日常生活中。 PEMFC中主要是以電極中的白金觸媒促使燃料發生電化學反應而將化學能轉換為電能,白金因價格昂貴,故對於PEMFC之成本具有關鍵性的影響。而理想的觸媒載體材料需具有高比表面積及高導電度,使白金觸媒分散來達到高利用面積進而發揮高觸媒效率,以降低成本。本研究將以樟腦磺酸(CSA)作為界面活性劑將本質型導電高分子聚苯胺製備為管狀結構以作為觸媒載體,利用其高比表面積的特點來幫助白金觸媒的分散,另外,其管狀結構能夠避免如球狀載體堆疊時包覆白金觸媒顆粒的缺點,充分發揮觸媒利用面積。研究中並導入複合材料的概念,添加奈米碳管於聚苯胺奈米管中來補強聚苯胺的導電度與物理性質,以製備效率良好的複合電極材料。 研究結果顯示CSA可作為界面活性劑,在溶液中形成管狀微胞以作為聚苯胺奈米管成長的模板,並可扮演質子酸的角色使聚苯胺因摻雜效應而提高導電度。在聚苯胺/奈米碳管複合電極材料製備方面,利用Polyvinyl Pyrrolidone (PVP)分散劑可使白金觸媒均勻被覆於聚苯胺/奈米碳管複合電極材料之表面,所被覆之白金觸媒粒徑大小大致都分佈在5 nm以下,可見醇還原含浸法確實可製備出極小的白金奈米顆粒,達到白金觸媒微小化分散的效果,且管狀觸媒載體可避免白金被包覆的缺點。但添加5wt%奈米碳管之聚苯胺/奈米碳管複合電極材料其觸媒活性卻遠低於商用觸媒及其他樣品,而添加20wt%奈米碳管於聚苯胺/奈米碳管複合電極材料中提高其導電度後,觸媒活性有大幅度的提昇,可見觸媒載體之導電度的確對觸媒活性有重大影響。
Based on the consuming of energy and environmental protection, the development of green energy has received a lot of attention. Fuel cell, one of typical green energies, has great potential to be used in the near future. Advantages of fuel cells are their zero pollution, high efficiency and low noise in the course of generating electricity. In particular, proton exchange membrane fuel cells (PEMFC) contain several attractive properties, such as light weight, starting fast, great material selectivity, and can apply to daily life extensively. In PEMFC, the electrical-chemical reaction is mainly impelled with the platinum nanoparticle acted as catalyst in the electrode that changes the chemical energy into electrical energy. But the platinum nanoparticle is very expensive and has significant effect on the cost of PEMFC. A ideal catalyst carrier needs to have large surface area and high electrical conductivity to disperse platinum on its surface and attain to high catalyst efficiency. In this research, we have prepared polyaniline (PANI) nanotubes served as catalyst carriers and the characteristic of large surface area can improve the dispersion of platinum nanoparticles. On the other hand, their tubular structure can avoid the shortcoming of spherical catalyst carrier which wraps the platinum catalyst particle. Nevertheless, we also prepare PANI/carbon nanotube composites as catalyst carriers to reinforce the electrical conductivity and physical property of PANI. The result shows that the camphorsulfonic acid (CSA) acted as soft template can form tubular structure of synthesizing PANI nanotubes. The addition of Polyvinyl Pyrrolidone (PVP) can improve the dispersion of platinum on the surface of PANI/carbon nanotube composites. The tubular structure of PANI/carbon nanotube composites can avoid the shortcoming of spherical catalyst carriers which wraps the platinum nanoparticles and increase the utilization area of platinum. However the catalyst efficiency of PANI/carbon nanotube composites with 5wt% CNT are lower than commercial catalyst. Increasing the amount of CNT in PANI/carbon nanotube composites to 20wt% can enhance their conductivity and the efficiency of catalyst is raised. Therefore the conductivity of catalyst carriers has great effect on the efficiency of catalyst.
URI: http://hdl.handle.net/11455/11245
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.