Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11261
標題: 陽極氧化法製備奈米結構二氧化鈦薄膜於染料敏化太陽能電池之應用研究
Synthesis of nano-structured TiO2 films by anodic oxidation and application of the films in dye sensitized solar cells
作者: 陳冠名
Chen, Kuan-Ming
關鍵字: Anodic oxidation
陽極氧化
titanium dioxide
dye-sensitized solar cells
nano-structured
二氧化鈦
染料敏化太陽能電池
奈米結構
出版社: 材料工程學系所
引用: [1]K. O. Ott, “Global warming and the greenhouse effect,” Progress in Nuclear Energy, 29 (1995) 81. [2]L. L. Kazmerski, “Photovoltaics: a review of cell and module technologies,” Renewable and Sustainable Energy Reviews, 1 (1997) 71. [3]E Bequerel, “Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des.courants électriques,” C.R. Acad. Sci., 9 (1839) 145. [4]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical powder,” AIP, 261 (1976) 402. [5]A. Hagfeldt, B. Didriksson, T. Palmqvist, H. Lindstrom, S. Sodergren, H. Rensmo, and S.-E. Lindquist, “Verification of high efficiencies for the Grätzel-cell a 7 % efficient solar cell based on dye-sensitized colloidal TiO2 films,” Sol. Energy Mater. Sol. Cells, 31 (1994) 481. [6]W. West, “First hundred years of spectral sensitization,” Proc. Vogel Cent. Symp. Photogr. Sci. Eng., 18 (1974) 35. [7]D. R. Kearns, R. A. Hollins, A. U. Khan, R. W. Chambers, and P. Radlick, “Evidence for the participation of l.SIGMA.g + and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions.I,” J. Am. Chem. Soc., 89 (1967) 5455. [8]O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353 (1991) 737. [9]Q. Wang, S. Ito, M. Grätzel, F. F. Santiago, I. M. Sero, J. Bisquert, T. Bessho, and H. Imai, “Characteristics of high efficiency dye-sensitized solar cells,” J. Phys. Chem. B, 110 (2006) 25210. [10]M. A. Green, K. Emery, D. K. King, Y. Hishikawa, and W. Warta, Solar cell efficiency tables (version 29) John Wiley & Sons, Ltd. Sydney, (2006). [11]M. K Nazeeruddin, P. Pechy, T. Renouard, S. M.Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc., 123 (2001) 1613. [12]E. Hosono, S. Fujihara, I. Honma, and H. Zhou, “The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells,” Adv. Mater., 17 (2005) 2001. [13]D. Niinobe, Y. Makari, T. Kitamura, Y. Wada, and S. Yanagida, “Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 indye-sensitized solar cells,” J. Phys. Chem. B, 109 (2005) 17892. [14]F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Grätzel, D. Gal, S. Ruhle, and D. Cahen “Surface photovoltage spectroscopyof dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injectionfrom higher excited dye states” J. Phys. Chem. B, 105 (2001) 6347. [15]A. W. Norman, and F. A. Michael, CRC-elsevier materials selector CRC press Inc., Florida (2000). [16]R. W. Siegel, S. Ramasamy, H. Hahn, L. Zongquan, L. Ting, and R. Gronsky, “Synthesis, characterization, and properties of nanophase TiO2,” J. Mater. Res., 3 (1988) 1367. [17]Q. Chen, Y. Qian, Z. Chen, G. Zhou, and Y. Zhang, “Preparation of TiO2 powders with different morphologies by an oxidation-hydrothermal combination method,” Mater. Lett., 22 (1995) 77. [18]M. A. Anderson, M. J. Gieselmann and Q. Xu, “Titania and alumina ceramic membranes,” J. Membr. Sci., 39 (1988) 243. [19]M. Gomez, J. Rodriguez, S.-E. Lindquist, and C. G. Granqvist “Photoelectrochemical studies of dye-sensitized polycrystalline titanium oxide thin films prepared by sputtering,” Thin Solid Films, 342 (1998) 148. [20]M. Gomez, J. Rodriguez, S. Tingry, A. Hagfeldt, S.-E. Lindquist, and C. G. Granqvist “Photoelectrochemical effect in dye sensitized, sputter deposited Ti oxide films:The role of thickness-dependent roughness and porosity,” Sol. Energy Mater. Sol. Cells, 59 (1999) 277. [21]M. Gomez, E. Magnusson, E. Olsson, A. Hagfeldt, S.-E. Lindquist, and C. G. Granqvist “Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization:Efficiency versus film thickness,” Sol. Energy Mater. Sol. Cells, 62 (2000) 259. [22]M.M. Gomez, J. Lu, E. Olsson, A. Hagfeldt, and C. G. Granqvist “High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films,” Sol. Energy Mater. Sol. Cells, 64 (2000) 385. [23]Y.-M. Sung, and H.-J. Kim “Sputter deposition and surface treatment of TiO2 films for dye-sensitized solar cells using reactive RF plasma,” Thin Solid Films, 51 (2007) 4996. [24]J. M. Macak, H. Tsuchiya, A. Ghicov, and P. Schmuki “Dye-sensitized anodic TiO2 nanotubes,” Electrochem. Commun., 7 (2005) 1133. [25]M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor,, B. Hardin, and C. A. Grimes “Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes,” Nanotechnology, 17 (2006) 1446. [26]M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Grimes “Applicatiom of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells,” J. Phys. D: Appl. Phys., 39 (2006) 2498. [27]H. Wang, C. T. Yip, K. Y. Cheugn, A. B. Djurisic, and M. H. Xie “Titania nanotube array based photovoltaic cells,” Appl. Phys. Lett., 89 (2006) 023508. [28]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C.A. Grimes “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett., 6 (2006) 215. [29]K. Zhu, N. R. Neale, A. Midaner, and A. J. Frank “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett., 7 (2007) 69. [30]楊于紹,“陽極氧化法製備奈米二氧化鈦薄膜之研究” 國立中興大學材料工程所碩士論文,2003年。 [31] 劉厥揚,“陽極氧化法於可撓性基材製備奈米二氧化鈦之研究” 國立中興大學材料工程所碩士論文,2004年。 [32]龔建文,“以陽極氧化法於鈦塊材與鍍鈦矽晶片上製備奈米二氧化鈦薄膜之研究” 國立中興大學材料工程所碩士論文,2005年。 [33]S. Pelet, J. E. Moser, and M. Grätzel “Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2,” J. Phys. Chem. B, 104 (2000) 1791. [34]K. Tennakone, G. Kumara, A. Kumarasinghe, K. Wijayantha and P. Sirimanne “A dye-sensitized nano-porous solid photovoltaic cell,” Semicond. Sci. Technol., 10 (1995) 1689. [35]M. Grätzel, “Photoelectrochemical cells,” Nature, 414 (2001) 338. [36]D. Cahen, G. Hodes, M. Grätzel, J. F. Gauillemoles, and I. Riess, “Nature of photovoltaic action in dye-sensitized sloar cells,” J. Phys.Chem. B, 104 (2000) 2053. [37]Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel “Investigation of sensitizer adsorption and influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” J. Phys. Chem. B, 107 (2003) 8981. [38]C. Klein, Md. Nazeeruddin, D. Di Censo, P. Liska, and M. Grätzel “Amphiphilic ruthenium sensitizers and their application in dye-sensitized solar cells,” Inorg. Chem., 43 (2004) 4216. [39]S. Nakade, T. Kanzaki, W. Kubo, T. kitamura, Y. Wade, and S. Yanagida “Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- redox couple,” J. Phys. Chem. B, 109 (2005) 3480. [40]A. Hagfeldt and M. Grätzel, “Light-induced redox reaction in nanocrystalline systems,” Chem. Rev., 95 (1995) 49. [41]R. Eichberger, and F. Willig “Ultrafast electron injection from excited dye molecules into semiconductor electrodes,” Chem. Phys., 141 (1990) 159. [42]R. D. McConnell, “Assesment of the dye-sensitized solar cell,” Renewable and Sustainable Energy Reviews, 6 (2002) 273. [43]K. Schwarzburg, and F. Willig, “Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell,” J. Phys. Chem. B, 103 (1999) 5743. [44]J. Desilvestro, M. Grätzel, L. Kavan, and J. Moser “Highly efficient sensitization of titanium dioxide,” J. Am. Chem. Soc., 107 (1985) 2988. [45]G. Smestad, C. Bignozzi and R. Argazzi “Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies,” Sol. Energy Mater. Sol. Cells, 32 (1994) 259. [46]C. J. Barbe, F. Arendse, P. Omte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram, Soc., 80 (1997) 3157. [47]G. Schlichtho1rl, S. Y. Huang, J. Sprague, and A. J. Frank “Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy,” J. Phys. Chem. B, 101 (1997) 8141. [48]E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, “Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers,” J. Am. Chem. Soc., 125 (2003) 475. [49]M. Grätzel, “Perspectives for dye-sensitized nanocrystalline solar cells,” Photovolt. Res. Appl., 8 (2000) 171. [50]Z. Zou, J. Ye, K. Sayama, and H. Arakawa “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature, 4 (2001) 625. [51]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel “Conversion of light to electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II)charge-transfersensitizers (X=Cl-,Br-,I-,CN-,and SCN-) on nanocrystaloine TiO2 electrodes,” J. Am. Chem. Soc., 115 (1993) 6382. [52]G. J. Meyer “Efficient light-to-electrical energy conversion:nanocrystalline TiO2 films modified with inorganic sensitizers,” J. Chem. Educ., 74 (1997) 652. [53] Md. K. Nazeeruddin, P. Péchy and M. Grätzel “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex,” Chem. Commun., 17 (1997) 1705. [54]A. Hagfeldt, and M. Grätzel “Molecular Photovoltaics,” Acc. Chem. Res., 33 (2000) 269. [55]Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, and M. Gra1tzel “Acid-Base equilibria of (2,2-Bipyridyl-4,4-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorg. Chem., 38 (1999) 6298. [56]Md. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” J. Phys. Chem. B, 107 (2003) 8981. [57]A. Kay, and M. Grätzel “Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins,” J. Phys. Chem., 97 (1993) 6272. [58]W. M. Campbell, A. K. Burrell, D. L. Officer, and K. W. Jolley “Porphyrins as light harvesters in the dye-sensitized TiO2 solar cell,” Coord. Chem. Rev., 248 (2004) 1363. [59]J. R. Durrant, S. A. Haque, and E. Palomares, “Towards optimisation of electron transfer processes in dye sensitised solar cells,” Coord. Chem., Rev. 248 (2004) 1247. [60]Y. Liu, A. Hagfeldt, X.-R. Xiao, and S.-E. Lindquist “Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell,” Sol. Energy Mater. Sol. Cells, 55 (1998) 267. [61]S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeekuddin, P. Pechy, M. Takata, H. Miura, S. Uchida and M. Grätzel “High-efficiency organic-dye sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater., 18 (2006) 1202. [62]A. Kay, and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,” Sol. Energy Mater. Sol. Cells, 44 (1996) 99. [63]N. Papageorgiou, W. F. Maier, and M. Grätzel, “An iodide/triiodide reduction electrocatalyst for aqueous and organic media,” J. Electrochem. Soc., 144 (1997) 876. [64]X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,” J. Electroanal. Chem., 570 (2004) 257. [65]S. N. Chen, S. K. Deb, and H. Witzke, “Dye-titanium dioxide photogalvanic cell,” U. S. Patent, 4080488. [66]H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, 261 (1976) 402. [67]S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa “Highly efficicnt dye-sensitized solar cell using nanocrystalline titania containing nanotube structure,” J. Photochem. Photobiol., A 164 (2004) 145. [68]J. Jiu, S. Isoda, F. Wang, and M. Adachi “Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film,” J. Phys. Chem. B, 110 (2006) 2087. [69]R. Prusi, and Lj. D. Arsov, “The growth kinetics and optical properties of films dormed under open circuit conduction on a titanium surface in potassium htdroxide solutions,” Corros. Sci., 33 (1992) 153. [70]T. Oxtsuka, and N. Nomura “The dependence of the optical property of Ti anodic oxide film on its growth rate by ellipsometry,” Corros. Sci., 39 (1997) 1253. [71]D. A. Skoog, and J. J. Leary,Principles of instrumental analysis,Fort Worth :Saunders College (1992). [72]L. D. Arsov, C. Kormann, and W. Plieth, “Electrochemical synthesis and in situ raman spectroscopy of thin films of titanium dioxide,” J. Raman Spectrosc., 22 (1991) 573. [73]N.-G. Park, J. van de Lagemaat, and A. J. Frank “Comparison pf Dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B, 104 (2000) 8989. [74]S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Grätzel “Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells,” Chem. Commun., (2005) 4351. [75]Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida “Dye-sensitized TiO2 nanotube solar cells:fabrication and electronic characterization,” Phys. Chem. Chem. Phys., 7 (2005) 4157. [76]M. Adachi, Y. Murata, I. Okada and S. Yoshikawa “Formation of titania nanotubes and application for dye-sensitized solar cells,” J. Electrochem. Soc., 150 (2003) G488. [77]M. Grätzel “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem., 44 (2005) 6841.
摘要: 本研究主要是利用本實驗室既有之專利製程,將於鍍鈦玻璃基材 (Ti/glass) 上所成長之奈米網狀及顆粒狀結構TiO2薄膜應用於染料敏化太陽能電池之薄膜電極,並將不同奈米結構TiO2薄膜對光電轉換效率之影響進行探討。具有奈米網狀及顆粒狀結構之TiO2薄膜分別是在1 M KOH鹼性及1 M H2SO4酸性電解液下,以陽極氧化法之掃描電壓模式進行成長。此外,亦使用鍍鈦矽晶片 (Ti/Si) 為對照組進行比較。 鹼性電解液製備之TiO2薄膜以場發射掃描式電子顯微鏡 (FE-SEM) 觀察之表面形貌為奈米網狀結構。陽極氧化製程中電解液濃度能控制奈米網環大小,而隨著電解液濃度的增加,奈米網環亦會有變大之趨勢。應用於染料敏化太陽能電池之結果顯示,奈米網環大小約在40 nm時可量測到0.0057 %之最佳光電轉換效率,而奈米網環過大或太小都不利於光電轉換效率之提升。 酸性電解液H2SO4製備之TiO2薄膜表面形貌則為奈米顆粒狀結構。改變陽極氧化製程中之掃描電壓速率可控制奈米顆粒狀結構中之顆粒大小,且隨著掃瞄速率的增加,生成之奈米顆粒有變小之趨勢。當TiO2顆粒大小約45 nm時,所組裝之染料敏化太陽能電池可量測到0.125 %之最佳光電轉換效率,而隨著顆粒大小增加光電轉換效率也會增加。另外,不論是奈米網狀或顆粒狀結構,TiO2薄膜之光電轉換效率皆會隨著製程中之掃描截止電壓的增加而下降。以紫外光可見光光譜儀 (UV-Vis) 量測吸收光譜後可得知顆粒狀結構TiO2薄膜之吸收強度比網狀結構TiO2薄膜強,顯示染料對奈米顆粒狀結構TiO2薄膜之敏化效果較好。 以陽極氧化法於Ti/Si上所製備之奈米網狀或顆粒狀結構TiO2薄膜比Ti/glass所製備可獲得較高之光電轉換效率。而由FE-SEM分析得知奈米網狀結構TiO2薄膜厚度約80±10 nm;奈米顆粒狀結構TiO2薄膜厚度則為90±5 nm,而將兩種結構之TiO2薄膜所量測到之最佳光電轉換率和TiO2厚度相除所得之比值分別為0.063 (網狀)及2.2 (顆粒狀)。文獻中之比值最大為8.1,其次為1.3,顯示具有奈米顆粒狀結構之TiO2薄膜於染料敏化太陽能電池的應用上具有較佳之潛力。
The objective of this research is to apply nano-network and nanoparticle structured titanium dioxides (TiO2) films synthesized on Ti-coated glass (Ti/glass) on dye-sensitized solar cells. Influences of on the efficiency of light-to-electricity conversion the different nano-structured films were investigated. Synthesis of nano-network and nanoparticle-structured TiO2 were prepared by using anodic oxidation method with linear voltammetry mode in 1 M KOH alkaline and 1 M H2SO4 acid electrolyte, respectively, which is our lab''s patented process. Ti-coated silicon (Ti/Si) was also utilized as substrates for comparison. Surface morphology of the TiO2 films synthesized in KOH electrolyte was examined by field-emission scanning electron microscopy (FE-SEM), exhibiting a nano-network structure. Results revealed that the ring size of nano-network could be controlled by changing the concentration of electrolytes during anodic oxidation. Moreover, the ring size of the nano-network increased with increasing the electrolyte concentration. As the ring size of nano-network TiO2 films used in dye-sensitized solar cells was about 40 nm, the efficiency of light-to-electricity conversion could reach a highest value of 0.0057 %. Larger or smaller ring size of the nano-network would degrade the device performance. Obtained TiO2 films in H2SO4 electrolyte possessed a dense, nanoparticle surface morphology. The potential scanning rate could affect the nanoparticle sizes significantly. Furthermore, the nanoparticle sizes decreased with increasing the scanning rate. The efficiency of light-to-electricity conversion of the dye-sensitized solar cells could achieve a highest value of 0.125 % when the nanoparticle sizes of TiO2 films was about 45 nm. The light-to-electricity conversion efficiency also increased as the nanoparticle sizes increased. Furthermore, the light-to-electricity conversion efficiency decreased with increasing scanning cut-off voltages irrespective the structure of the TiO2 films. The UV-Vis spectra reveal that the absorption peaks of nanoparticle TiO2 films are stronger than that with nano-network structure. This result implied that the nanoparticle TiO2 films could be performed than nano-network films. Nano-network or nanoparticle structured TiO2 prepared on Ti/Si could result in better light-to-electricity conversion efficiency, compared to those synthesized on Ti/glass. The thickness of nano-network TiO2 obtained by FE-SEM micrographs was 8010 nm, and was 905 nm for nanoparticle TiO2. The best values of the ratio of efficiency and thickness for nano-network and nanoparticle structured TiO2 films were 0.063 and 2.2, respectively. In the literature, the highest efficiency/thickness was 8.1 and the second one was 1.3. Our results show that TiO2 films with nanoparticle structure would performed much better than most of the results in the literature concerning efficiency/thickness ratios in dye-sensitized solar cells application.
URI: http://hdl.handle.net/11455/11261
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.