Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11272
標題: 800H與825鎳基超合金銲接熱龜裂敏感性研究
A Study of Hot Cracking Susceptibility during Welding on Incoloy 800H and 825 Superalloys.
作者: 包景毅
Pao, Ching-Yi
關鍵字: 鎳基超合金
Nickel superalloys
熱龜裂敏感性
熱裂紋
熱分析
Hot Cracking Susceptibility
hot cracking
heat analysis
出版社: 材料科學與工程學系所
引用: 【1】 黃忠良 譯,金屬材料之高溫氧化與腐蝕,復漢出版社,pp 1-8,民國七十七年。 【2】 賴耿陽,非鐵金屬材料,復漢出版社,民國八十九年。 【3】 K. C. Hsieh, Thermodynamic properties and phase diagrams between Ni-base alloys and Zirconia, NSC84-2216-E110-010, pp. 93, 1994. 【4】ASM Metals HandBook Volume 06, General Welding Characteristics of High-Temperature Materials ,2001 【5】K. SAITO, M. AOKI, H. KONDO and N. IKEDA “Influence of Boron Content on Hot Cracking Sensitivity of Weld Heat Affected Zone in Incoloy 800” Transactions ISIJ , Vol.27, pp.664-672, 1987 【6】Sindo Kou, Welding Metallurgy ,2nd Ed ,A John Wiey & Sons,Inc ,New Jersey,2003. 【7】Sindo Kou,WELDING METALLURGY ,2nd Ed ,A JOHN WILEY &SONS,INC ,New Jersey, pp263-296,2003.(重複) 【8】 A.Lingenfelter, Metallurgy and Applications, Ed, E.A., Loria pp 673-683 ,1989. 【9】 Asm Specialty Handbook “Heat-Resistant Material” The Materials Information Society pp 3-10, 1997 【10】 張宏睿,超合金IN-738LC粉浴鍍層之研究,國立台灣大學材料科學與工程學研究所碩士論文,民國86年。 【11】 ASM Metals HandBook Volume 02, Physical Metallurgy of Nickel and Nickel Alloys,2001 【12】 吳奕璇,“Rene 77 鎳基超合金鑄件填銲之研究”,國立中興大學材料工程學系碩士學位論文,民國 96 年 5 月。 【13】 By Roger C. Reed, The Superalloys ,Imperial College of Science, Technology and Medicine, London , pp 33-114 ,2009. 【14】 J. Zhang “Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792” Scripta Materialia Vol.48 pp. 677–68, 2003 【15】 Martienssen Warlimont,Springer Handbook of Condensed Matter and Materials Data , 1st, Springer, New York, pp279-295,2005. 【16】 L. Yinan, L. Xuesong, Y. Jiuchun , M. Lin, L. Chunfeng “Effect of Ti on hot cracking and mechanical performance in the gas tungsten arc welds of copper thick plates” Materials and Design, Vol.35, pp303–309,2012. 【17】 P.A. Kammer, K. Masubuchi, and R.E Monroe: Defense Metals Information Center, DMIC Report 197, 1964 【18】 C.D. Lundin: Ph.D. Dissertation, Rensselaer Polytechnic Institute,Troy, Ny, 1966. 【19】 施舜寶,“添加不同助銲劑對鉻基硬面合金之特性研究”,國立中興大學材料工程學系,碩士學位論文,民國九十九年六月。 【20】 周長彬,蘇程裕,蔡丕椿,郭央諶,編著 ”銲接學” 全華科技圖書,pp3-7民國94年。 【21】 C. M. Chang , C. M. Lin , C. C. Hsieh, J. H. Chen, and W. Wu ,“Micro-structural characteristics of Fe-40 wt% Cr-xC hardfacing alloys with [1.0-4.0 wt%] carbon content” characteristics of Fe-40 wt%Cr-xC hardfacing alloys with [1.0-4.0 wt%] carbon content” Journal of Alloys and Compounds, Vol.487,pp. 83-89, 2009 【22】 A. Durgutlu, “Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel,” Materials & Design, Vol. 25, pp. 19-23, 2004 【23】 S. Kou, WELDING METALLURGY, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 13-14, 2003 【24】 邱建 “延遲裂紋的產生机理及防止措施”Science & Technology Information No.36 第8頁,民國79年 【25】 鄭依洛, “銲道破裂與防止(一)-高溫破裂,”,銲接與切割,第三卷,第一期,第51-56頁,民國82年。 【26】 B. Hemsworth,T . Boniszewski, and N.F. Eation: Metal Const. Br. Weld. J., Vol.2, pp5-16 1969 【27】 林旺恩, “銲接熱裂紋探討”,機械月刊第二十卷第三期pp165-172民國八十三年三月。 【28】 Nakata, K., and Matsuda, F Transcactions of the JWRI Vol.24, pp83 1995 【29】 Y. ARATA , F. MATSUDA and S. KATAYAMA Transcactions of the JWRI pp.105-116 【30】Weite Wu and C.H. Tsai “Hot Cracking Susceptibility of Fillers 52 and 82 in Alloy 690 Welding” Metallurgical and Materials Transactions, Vol 30A, No.2, P417-426, 1999. 【31】Thomas B‥ollinghaus, Hot Cracking Phenomena in Welds II ,1st Ed., Springer Verlag,New York,pp147-170,2008 【32】莊瑛仁,林義成,“鎳基合金的銲接裂縫”,銲接與切割, 第九卷,第四期,第39-44頁,民國87年 【33】鄭依洛, “銲道破裂與防止(二)-高溫破裂,”,銲接與切割,第四卷,第一期,第42-54頁,民國83年。 【34】江家慶、王星豪,“銲接熱裂縫之理論及機制”,銲接與切割, 第10卷,第2期,第41-51頁,民國89年。 【35】曾光宏,“沃斯田鐵不鏽鋼熱裂縫、晶界腐蝕及脆裂之形成與防治”,銲接與切割, 第八卷,第六期,第32-36頁,民國87年 【36】P. Bernasovsky “Contribution to HAZ Liquation Cracking of Austenitic Stainless Steels”Hot Cracking Phenomena in Welds III pp84-103 【37】F.Matsuda,”Hot Crack Susceptibility of Weld Metal”Advences in Welding Metallurgy, JWS pp19-34,1990 【38】陳道達 譯,熱分析,渤海堂文化公司,中華民國八十一年。 【39】T. Hatakeyama and Zhenhai Liu “HANDBOOK OF THERMAL ANALYSIS” John Wiley & sons, Inc , New York, pp 15-41 ,1998 【40】WEITE WU and C.H. TSAI“Hot Cracking Susceptibility of Fillers 52 and 82 in Alloy 690 Welding “ METALLURGICAL AND MATERIALS TRANSACTIONS , Vol. 30A, pp417-426 ,1999 【41】W.F. Savage and C.D. Lundin: Weld. J., 1965, vol. 44 (10), pp. 433s-442s. 【42】W.F. Savage and C.D. Lundin: Weld. J., 1966, vol. 45 (11), pp. 497s-503s. 【43】C.P. Chou and C.H. Chao “REPAIR WELDABILITY STUDIES OF ALLOY 718 USING VERSATILE VARESTRAINT TEST” Superalloys , The Metallurgy Society, pp785-793, 1988 【44】 H. Inoue and T. Ogawa, Weld. J. vol. 74 , pp. 21s-27s 1995 【45】Y.ARATA, F.MATSUDA, and S.SARUWATARI “Varestraint Test for Solidification Crack Susceptibility in Weld Metal of Austenitic Stainless Steels” Transactions of JWRI Vol.3, pp 79-88, 1974 【46】K. SAITO, M. AOKI and H. KONDO “Influence of Al and Ti on Hot Cracking Sensitivity of Weld Heat Affected Zone in Incoloy 800 through Hot Ductility Characteristics” Transactions ISIJ , Vol.27, pp580-589, 1987 【47】R. Dehmolaei, M. Shamaniana, A. Kermanpur “Effect of electromagnetic vibration on the unmixed zone formation in 25Cr–35Ni heat resistant steel/Alloy 800 dissimilar welds” Materials characterization Vol.59, pp1814-1817 2008 【48】Sindo Kou, WELDING METALLURGY ,2nd Ed ,A JOHN WILEY &SONS,INC ,New Jersey pp145-169 2003 【49】王黎云,“Incoloy 800H 合金的成分與結構特徵”,特殊鋼,第15卷,第一期,第41-44頁,西元1993年。 【50】V.Shankar, T.P.S.Gill, S.L.Mannan and S.Sundaresan “Solidification cracking in austenitic stainless steel welds” Academy Proceedings in Engineering Sciences Vol.28 pp.359-382 2012 【51】C.S.WU “Causes of the formation of longitudinal surface cracks on the DC-cast 7039 aluminium ally” Journal of Materials Vol.23, pp606-610 1988 【52】J.N. Dupont, C.V. Robino and A.R. Marder, “Solidification and weldability of Nb-Bearing Superalloys” Welding Research Supplement,pp.417-431,1998 【53】J.N. Dupont, “Microstructural Development and Solidification Cracking Susceptibility of a Stabilized Stainless Steel” Welding Research Supplement, pp253-263,1999 【54】Sindo Kou, Welding Metallurgy ,2nd Ed ,A John Wiley &Sons,Inc ,New Jersey pp97-121 2003 【55】V. Shankar, T.P.S. Gill, A.L.E. Terrance, S.L. Mannan, and S. Sundaresan “Relation between Microstructure, Composition, and Hot Cracking in Ti-Stabilized Austenitic Stainless Steel Weldments” Metallurgical and Materials Transactions, Vol.30, pp3109-3122, 2000 【56】Yanhong Wei a,*, Zhibo Dong a, Renpei Liu b, Zhujue Dong c “Modeling the Trans-Varestraint test with finite element method” Computational Materials Science, Vol.35, pp84-91, 2005 【57】Sindo Kou, WELDING METALLURGY ,2nd Ed ,A JOHN WILEY &SONS,INC ,New Jersey ,pp.122-141,2003 【58】Bollinghaus, Thomas, Hot Cracking Phenomena In Welds, 1st, Springer, New York,pp19-41 2005 【59】W.F.Savage,C.D.Lundin “Application of the varestraint technique to the study of weldability” Weld Journal,Vol.45,pp497-503,1965 【60】M. B. Zaghloul , A. A. Sadek , A. M. El-Batahgy and M. Hanafy “Effect of Welding Parameters on Hot Cracking Susceptibility of Alloy 800 ” Journal of Japan Welding Society, Vol.12, No3, pp.335-341,1994 【61】朱小四,王建新,高建國,"Incoloy 800H 高溫合金腐蝕原因分析" 化工設備與防腐蝕,第6期,西元2001 【62】C. P. Chou and C. H. Chao “Repair Weldability studies of Alloy 718 using Varesatile Varestraint test ” Superalloys ,pp.785-793,1988
摘要: 本研究係以Incoloy 800H和825鎳基合金為基材,分別針對添加填料與未添加填料進行熱裂紋敏感性特性試驗。利用鎢極惰性氣體遮護電弧銲接法(Gas Tungsten Arc Weld, GTAW)銲接。最後使用鎢極惰性氣體遮蔽電弧銲接進行點狀變應變實驗(Spot Varestraint Test),觀察鎳基超合金在高溫下受到臨界應變量(CST)對裂紋的影響。另一方面藉由立體顯微鏡、光學顯微鏡觀察裂紋表面組織型態以及X光繞射分析銲道結構,由掃瞄式電子顯微鏡(Scanning Electronic Microscope, SEM)觀察龜裂型態及龜裂破斷面銲道及裂紋分佈之情形,並取合理範圍內並記錄最大龜裂長度(Maximum crack length, MCL)、最大龜裂距離(Maximum crack distance, MCD)及總龜裂長度(Total crack length, TCL)。並利用熱差分析儀(DTA)分析鎳基超合金液/固溫度差值(ΔT)範圍,探討熱龜裂敏感性。 結果顯示鎳基超合金添加填料在高溫下,龜裂敏感性低於未添加填料母材,其中以添加Inconel 82填料對熱龜裂敏感性影響較低,根據這些銲接數據可以得材料之熱龜裂敏感性與液/固溫度差值(ΔT)範圍相關性,裂紋總長度越長,熱分析顯示之液/固溫度差值(ΔT)範圍也越大,熱龜裂敏感性越高。裂紋形貌在金相上顯示分別有(a)熔池內沿晶裂紋,(b)熔池內之凝固裂紋,(c)銲道熱影響區之沿晶裂紋,(d)基材熱影響區之穿晶裂紋。根據裂紋形貌可推測出材料高溫下發生龜裂之過程與情形,在SEI與BEI圖像下觀察裂紋周圍可能產生之析出物,並以EDS分析周圍組織成分,結果顯示出Incoloy 鎳基合金在高溫下並無低溫相析出物產生,在在顯示出是由於變應變試驗將基材臨界應變提升至脆性溫度範圍區間,而高溫下脆性溫度範圍越大則代表熱龜裂敏感性越高,結果顯示Incoloy 800H鎳基合金熱龜裂敏感性最高。
In this study, the hot cracking susceptibility of the Incoloy 800H and 825 nickel-base alloy substrate was discussed with filler and without filler. And later nickel alloy of filler 52 and 82 Tungsten inert gas shielded arc welding in the specimen. Observation of nickel based superalloy at high temperature by the critical strain for crack. On the other hand by using a stereoscopic microscope, optical microscope observation of the crack surface type of organization, as well as X-ray diffraction analysis of the weld structure, observed by scanning electron microscopy. The maximum crack length, amount of cracks, and total cracks length were recorded. The difference of liquid and solid (ΔT) was analyzed in nickel-based superalloy using differential thermal analysis (DTA) and then examine the relationship between cracks and the hot cracking sensitivity. The results showed that the hot cracking sensitivity of the nickel-based super-alloys with filler at high temperature was lower than that without filler base metal. The hot cracking sensitivity had a slight effect with the Inconel 82 filler addition. According to experimental data, the relationshop between the hot cracking susceptibility and the liquid-solid two-phase range can be obtained. When the crack total length was increased, the liquid-solid two-phase range is higher and then the hot cracking susceptibility was raised. The morphologies of cracks included the intergranular crack in the molten pool, the molten pool solidification cracking, the weld heat-affected zone of intergranular cracks, and the transgranular crack in the heat-affected zone. The occurrence of cracking in materials under high temperature can be inferred according to the morphologies of cracks. The results showed that no low temperature precipitates under high temperature incoloy nickel-based alloys. This was because that a critical strain increased to the range of the brittle temperature range rature in base metal during the varistraint test. When the brittle temperature range was higher under high temperature, hot cracking sensitivity was more obvious. The results displayed the hot cracking sensitivity was most evident in Incoloy 800H alloys of all the nickel-based alloys.
URI: http://hdl.handle.net/11455/11272
其他識別: U0005-2408201212154900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408201212154900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.