Please use this identifier to cite or link to this item:
標題: CIGS薄膜太陽電池之可撓性不銹鋼基板研究
Study on The CIGS Thin Film Solar Cell on Flexible Stainless Steel Substrates
作者: 丁傑明
Ting, Chieh-Ming
關鍵字: CIGS薄膜太陽電池
CIGS thin film solar cells
stainless steel
flexible substrate
出版社: 材料科學與工程學系所
引用: 【1】Ben G.Streetman and Sanjay Kumar Banerjee, Solid State Electronic Devices, 6st Ed., Pearson Education Hall, USA, pp. 114-126, 2006. 【2】顧鴻濤,太陽能電池元件導論-材料、元件、製造、系統,全威圖書有限公司,第29-33頁,1999年6月。 【3】L. El Chaar, L.A. lamont, and N. El Zein,“Review of photovoltaic technologies,” Renewable and Sustainable Energy Reviews, Vol. 15, pp. 2165–2175, 2011. 【4】U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoc, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, Vol 98, pp 041301 - 041301-103 , 2005. 【5】李俊賢,”CuInSe2:Sb 薄膜太陽能電池之研製”,中山大學材料科學研究所碩士論文,中華民國九十三年七月 【6】F. Kessler, D. Herrmann and M. Powalla, “Approaches to flexible CIGS thin-film solar cells”, Thin Solid Films, pp. 491- 498, 2005. 【7】W.K. Batchelor, I.L. Repins, J. Schaefer and M.E. Beck, “Impact of substrate roughness on CuInxGa1-xSe2 device properties”, Solar Energy Materials & Solar Cells, Vol. 83, pp. 67-80, 2004. 【8】Anton Zuser, Helmut Rechberger,“Considerations of resource availability in technology development strategies: The case study of photovoltaics,” Resources, Conservation and Recycling, Vol. 56, pp. 56–65, 2011. 【9】Ben G.Streetman and Sanjay Kumar Banerjee, Solid State Electronic Devices, 6st Ed., Pearson Education Hall, USA, pp. 160-161, 2006. 【10】Satyen K Deb, “Frontiers in photovoltaic materials and devices”, Solid State & Materials Science, Vol.3, pp.51-59, 1998. 【11】 沈輝、曾祖勤,太陽能光電技術,五南圖書出版股份有限公司,第74-109頁,2008年2月。 【12】顧鴻濤,太陽能電池元件導論-材料、元件、製造、系統,全威圖書有限公司,第65-66頁,1999年6月。 【13】Yoshihiro Hamakawa, “Recent Advances of Thin Film Solar Cells and Their Technologies”, World Conference on Photovoltaic Energy Conversion, Hawaii, USA, Dec, 1994, pp. 34-41. 【14】Miro Zernan, “New Trends in Thin-Film Silicon Solar Cell Technology”, Conference on Advanced Semiconductor Devices & Microsystems, Smolenice Castle, Slovakia, Oct, 2002, pp.353-362. 【15】Michael Powalla and Bemhard Dimmle, “New Developments in Cigs Thin-Film Solar Cell Technology” World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May, 2003, pp.313-318. 【16】 Takuya Satoh, Yasuhiro Hashimoto, Shin-ichi Shimakawa, Shigeo Hayashi, and Takayuki Negami, “CIGS Solar Cells on Flexible Stainless Steel Substrates”, Photovoltaic Specialists Conference, Anchorage, AK, Sep, 2000, pp.567-570. 【17】 Takuya Satoh, Yasuhiro Hashimoto, Shin-ichi Shimakawa, Shigeo Hayashi, and Takayuki Negami “Cu(In,Ga)Se2 Solar Cells on Stainless Steel Substrates Covered with Insulating Layers”, Solar Energy Materials & Solar Cells, Vol. 75, pp. 65-71, 2003. 【18】W. Sharfarman, J. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells”, Photovoltaic Specialists Conference, Washington DC,May, 1996, pp. 917-920. 【19】T. Vink, M. Somers, J. Daams, A. Dirks, “Stress strain and microstructure of sputter deposited Mo thin films”, Journal of Applied Physics, Vol.70, pp. 4301-4308, 1991. 【20】Joseph J. Loferski, “Stoichiometric effects on the properties of copper based chalcopyrite I-III-VI 2 semiconductor thin films”, Materials Science and Engineering, Vol 13, pp 271-277, 1992. 【21】F. Hergert, S. Jost, R. Hock, M. Purwins, “A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se2”, Journal of Solid State Chemistry, Vol 179, pp 2394-2415, 2006. 【22】U. Rau and H.W. Schock, Cu(In,Ga)Se2 Thin-Film Solar Cells, institut fur Physikalische Elektronik (IPE),Universitat Stuttgart, Germany, pp 306-307, 2005. 【23】A.A.I. Al-Bassam, “X-ray analysis and band gap measurement of Cu In1yxGaxSe2 flms”, Materials Chemistry and Physics, Vol 62, pp 175-178, 2000. 【24】M.L. Fearheiley, “The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals”, Solar Cells, Vol 16, pp. 91-100, 1986. 【25】Haalboom T., Gӧdecke T., Ernst F., Rfihle M., Herberholz R., Schock H.W., Beilharz C., Benz, K.W., “Phase relations and microstructure in bulk materials and thin films of the ternary system Cu-In-Se”,Inst. Phys. Conf. Ser, Vol. 152E, p. 249, 1997. 【26】A. Romeo, M. Terheggen, D.A. Ras, D. Batzner, F. Haug, M. Kalin, D. Rudmann, A. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells”, Progress in Photovoltaics: Research and Applications, pp. 12-97, 2004. 【27】顧鴻濤,太陽能電池元件導論-材料、元件、製造、系統,全威圖書有限公司,第247-257頁,1999年6月。 【28】J. Zhang, L. Zhang, L. Zhu, Y. Zhang, M. Liu, X. Wang, “Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures”, Journal of Applied Physics, 102, pp. 114-903, 2007. 【29】U. Rau and H.W. Schock, Cu(In,Ga)Se2 Thin-Film Solar Cells, institut fur Physikalische Elektronik (IPE),Universitat Stuttgart, Germany, pp 319-321, 2005 【30】Milton Ohring, Materials Science of Thin Films, 2nd Ed., Academic Press, USA, pp. 277-353, 2002. 【31】A. Saulot, I. Iordanoff, C. Safon, Y. Berthier, Tribology Series, Elsevier, USA, Vol 35, pp. 153-178, 1999. 【32】T. Gorjanc, D. Leong, D. Roth, “Room temperature deposition of ITO using RF magnetron sputtering”, Thin Solid Films, Vol 413, pp. 181-185, 2002. 【33】T. Hata, S. Nakano, Y. Masuda, K. Sasaki, Y. Haneda, K. Wasa, “Heteroepitaxial growth of YSZ films on Si(100) substrate by using new metallic mode of reactive sputtering”, Vacuum, Vol 51, pp. 583-590, 1998. 【34】Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Elsevier, USA, pp. 237-286, 2010. 【35】H. Lee, J. Seo, Y. Choi, D. Lee, “The growth of indium tin oxide thin films on glass substrates using DC reactive magnetron sputter”, Vacuum, Vol 72, pp. 269-276, 2004. 【36】楊明輝,脈衝磁控濺鍍技術介紹,工業材料,2006。 【37】溫志中,電漿粒子與物理薄膜沈積的關聯與發展,工業材料,2004。 【38】M. Krejci, PhD thesis, ETH Zurich, 1999. 【39】Yen-Chin Huang, Zhen-Yu Li, Wu-Yih Uen, Shan-Ming Lan, K.J. Chang, Zhi-Jay Xie, J.Y. Chang,Shing-Chung Wang, Ji-Lin Shen, “Growth of g-In2Se3 films on Si substrates by metal-organic chemical vapor deposition with different temperatures”, Journal of Crystal Growth, Vol 310, pp. 1679–1685, 2008. 【40】M Emziane, S Marsillac, J Ouerfelli, J C Bern&de, R Le Ny, “γ-ln2Se3 thin films obtained by annealing sequentially evaporated In and Se layers in flowing argon”, Vacuum, Vol 48, pp. 871-878, 1997. 【41】Kegao Liua, Hong Liub, JiyangWangb, Lei Shia, “Synthesis and characterization of Cu2Se preparedy hydrothermal co-reduction”, Journal of Alloys and Compounds , 2009. 【42】J. P. Zhang, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, and X. J. Wang, “Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures,” J. Appl. Phys., 102, 114903, 2007. 【43】Karsten Otte, Liudmila Makhova, Alexander Braun and Igor Konovalov,“Flexible Cu(In,Ga)Se2 thin-film solar cells for space application”, Thin Solid Films, pp.613 -622, 2006. 【44】Friedrich Kessler and Dominik Rudmann,“Technological aspects of flexible CIGS solar cells and modules,” Solar Energy, Vol. 77, pp. 685–695, 2004. 【45】William F.Smith, “Structure and Properties of Engineering Alloys”, 2st Ed, McGraw-Hill international Editions, USA, pp.288-332, 1993. 【46】R. Wuerz, A. Eicke , M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin and O. Yazdani-Assl, “CIGS thin-film solar cells on steel substrates”, Thin Solid Films, Vol. 517, pp. 2415-2418, 2009. 【47】R. Wuerz, A. Eicke, F. Kessler, P. Rogin and O. Yazdani-Assl, “Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates”, Thin Solid Films, Vol. 519.pp. 7268–7271, 2001. 【48】Samira Khelifi, Abderrahmane Belghachi, Johan Lauwaert, Koen Decock, Jeannette Wienke, Raquel Caballero, Christian.A Kaufmann and Marc Burgelman, “Characterization of flexible thin film CIGSe solar cells grown on different metallic foil substrates”, Energy Procedia, Vol. 2, pp.109–117, 2010. 【49】P. Jackson, P.O. Grabitz, A. Strohm, G. Bilger, H.W. Schock, “Contamination of Cu(In,Ga)Se2 solar cells by metallic substrate elements”, 19th European Photovoltaic Solar Energy Conference, pp. 1936-1939, 2004. 【50】王志方,材料表面測定技術,復漢出版社,第182-192頁,1993年1月。 【51】郁仁貽,實用理論電化學,徐氏基金會,第403-407頁,1991年8月。 【52】Chi-Cheng Lin and Chi-Chang Hu, “Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model”, Electrochimica Acta, Vol.53, pp. 3356-3363, 2008. 【53】Chi-Cheng Lin, Chi-Chang Hu, Tai-Chou Lee, “Electropolishing of 304 stainless steel: Interactive effects of glycerol content, bath temperature, and current density on surface roughness and morphology”, Surface & Coatings Technology, Vol. 204, pp. 448-454, 2009. 【54】Shuo-Jen Lee and Jian-Jang Lai, “The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel”, Journal of Materials Processing Technology, Vol.140, pp.206-210, 2003. 【55】V. Vignal, J.C. Roux, S. Flandrois and A. Fevrier, “Nanoscopic studies of stainless steel electropolishing”, Corrosion Science, Vol.42, pp.1041-1053, 2000. 【56】Li Yuqiong, Yu Zhinong, Xue Wei and Leng Jian, “The electrolytic polishing of flexible display steel substrate”, Optical Fiber Communication and Optoelectronics Conference, Shanghai, Oct, 2007, pp. 17-19. 【57】Pieter Kuiper, Barry G. Searle, Petra Rudolf, L. H. Tjeng and C. T. Chen, “X-Ray Magnetic Dichroism of Antiferromagnet Fe203:The Orientation of Magnetic Moments Observed by Fe 2p X-Ray Absorption Spectroscopy”, Physical Review Letters, Vol. 70, No. 10, pp.1549-1552, 1993. 【58】A.R.B. de Castro, P.T. Fonseca, J.G. Pacheco, J.C.V. da Silva, .G.L.da Silva and M.H.A. Santana, “L-edge inner shell spectroscopyof nanostructured Fe3O4”, Journal of Magnetism and Magnetic Materials, Vol. 233, pp. 69-73, 2001. 【59】J. P. Crocombette, M. Pollak, F. Joliet, N. Thromat and M. Gautier-Soyer, “X-ray-absorption spectroscopy at the Fe L2 3 threshold in iron oxides”, Physical Review B, Vol. 52, No. 5, 1995. 【60】F. Aksoy, G. Akgul, Y. Ufuktepe, D. Nordlund, “Thickness dependence of the L2,3 branching ratio of Cr thin films”, Journal of Alloys and Compounds, Vol.508, pp.233-237, 2010.
摘要: 本研究探討不同表面粗糙度與表面氧化物的不銹鋼基板對CIGS薄膜太陽電池的影響,利用機械拋光製備不同表面粗糙度(Ra)的SUS304、SUS316與SUS430不銹鋼基板,再對不銹鋼基板表面做氧化熱處理,最後以磁控濺鍍法與真空退火在基板上製備CIGS太陽電池薄膜。基板之表面粗糙度與成份藉由表面輪廓儀量測表面與X光吸收光譜進行量測分析,薄膜層之成份與顯微結構藉由二次離子質譜儀、電子顯微鏡與X-ray繞射分析進行探討,最後利用外力撓曲測試觀察其外力撓曲後試片薄膜的龜裂程度。 實驗結果發現,在不同的不銹鋼材料中,SUS430不銹鋼基板在經過CIGS薄膜製程後與薄膜的附著性最佳。而不同表面粗糙度的SUS430不銹鋼基板中,最低表面粗糙度(Ra=26.7nm)基板的基板元素擴散至CIGS薄膜層較不顯著,薄膜層結構均勻,經撓曲後破壞裂痕最少。SUS430不銹鋼基板在大氣中氧化熱處理後,基板表面基板表面會形成二價鐵的FeO與三價鐵的Fe2O3,三價鐵較二價鐵更容易擴散至CIGS薄膜層。而在真空中1000oC氧化熱處理後,基板表面Cr2O3增多,能夠抑制基板中的鐵擴散至CIGS薄膜層並不明顯。
This investigation discusses effects of stainless steel substrates with different surface roughness and surface of oxide CIGS thin film solar cells, different surface roughness (Ra) of SUS 304, SUS316 were prepared using the mechanical polishing and surface of the stainless steel substrates were heated using an oxidation heat treatment. Finally, the CIGS film of solar cells were prepared using the magnetron sputtering and the vacuum annealing on the substrate. Micro-figure measuring instrument (α-step) and X-ray absorption spectroscopy (XAS) were used to measure the surface roughness and the analysis surface composition of the substrate. Secondary ion mass spectroscopy (SIMS), scanning electron microscopy (SEM), and X-ray diffraction were used to investigate the thin film layer’s composition and microstructure. External force deflection test was used to observe the degree of cracking of the specimen film after the external deflection. The experimental results showed that the SUS430 stainless steel substrate after CIGS thin film manufacturing process had a good adhesion with films. For the SUS430 stainless steel substrates of different surface roughness, the substrate element diffusion to CIGS thin film layer was unobvious with a minimum surface roughness (Ra = 26.7nm) substrate. A uniform thin-film layer structure after deflection test the crack was lowest. The FeO and the Fe2O3 were formed in the surface of SUS430 stainless steel substrate after oxidation heat treatment in the atmosphere. Fe3+ is easy to diffuse to the CIGS thin film layer. The Cr2O3 was increased in the surface of substrate after oxidation heat treatment at 1000oC in the vacuum. The Cr2O3 can’t be inhibited the diffusion of Fe from the substrate to the CIGS thin film layer.
其他識別: U0005-1607201211123800
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.