Please use this identifier to cite or link to this item:
標題: Cu2O與Cu2O-Ag2O薄膜製備及其特性分析
Deposition and characterization of Cu2O and Cu2O-Ag2O films
作者: 曾建誌
Tseng, Chien-Chih
關鍵字: 直流反應式濺鍍
DC-reactive magnetron sputtering
incident photon to current efficiency
plasma oxidation process
oxide heterojunction
出版社: 材料科學與工程學系所
引用: 1. M. Ristov, “Chemically deposited Cu2O thin film as an oxygen pressure sensor,” Thin Solid Films, Vol. 167, PP. 309-316, 1988. 2. S.P. Sharam, “Absorption of water on copper and cuprous oxide,” Journal of Vacuum Science and Technology B, Vol. 16, PP.1557-1559, 1979. 3. M. Hara, “Mechano-catalytic overall water splitting (II) nafion-deposited Cu2O,” Applied Catalysis A: General, Vol. 190, PP.35-42, 2000. 4. T, Takata, “Mechano-catalytic overall water splitting on some oxides (II),” Applied Catalysis A: General, Vol. 200, PP.255-262, 2000. 5. H. Maruska, “Photocatalytic decomposition of water at semiconductor electrodes,” Solar Energy, Vol. 20, PP.443-458, 2000. 6. N. Ozer, “Structure and optical properties of electrochromic copper oxide films prepared by reactive and conventional evaporation techniques,” Solar Energy Materials and Solar Cell, Vol. 30, PP. 13-26, 1993. 7. A. Sivasankar Reddy, “Influence of substrate bias voltage on the properties of magnetron sputtered Cu2O films,” Physica B, Vol. 370, PP. 29-34, 2005. 8. B.P. Rai, “Cu2O Solar cells: A review,” Solar cells, Vol. 25, PP. 265-272, 2003. 9. L.C. Olsen, “Experimental and theoretical studies of Cu2O solar cells,” Solar cells, Vol. 7, PP. 247-279, 1982. 10. E. Fortin, “Photovoltaic effects in Cu2O-Cu solar cells grown by anodic oxidation,” Solid-State Electronics, Vol. 25, PP. 281-283, 1982. 11. M. Bender, “Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers,” Thin Solid Films, Vol.326, PP. 67-71, 1998. 12. T. Suehiro, “Electronic properties of thin cuprous oxide sheet prepared by infrared light irradiation,” Thin Solid Films, Vol. 383, PP. 318-320, 2001. 13. A.O. Musa, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties,” Solar Energy Materials and Solar Cells, Vol. 51, PP. 305-316, 1998. 14. V. Georgieva, “Electrodeposited cuprous oxide on indium tin oxide for solar applications,” Solar Energy Materials and Solar Cells, Vol. 73, PP. 67-73, 2002. 15. S.S. Jeong, “Electrodeposited ZnO/Cu2O hetrojunction solar cells,” Electrochemica Acta, Vol. 53, PP. 2226-2231, 2008. 16. A.S. Reddy, “Structural and optical studies on dc reactive magnetron sputtered Cu2O films,” Materials Letters, Vol. 60, PP. 1617-1621, 2006. 17. A.S. Reddy, “Influence of substrate bias voltage on the properties of magnetron sputted Cu2O films,” Physica B, Vol. 370, PP. 29-34, 2005. 18. K. Akimoto, “Thin Film deposited of Cu2O and application for solar cells,” Solar Energy, Vol. 80, PP. 715-722, 2006. 19. M. Sawada, “Characteristics of indium-tin-oxide/silver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays,” Japanese Journal of Applied Physics, Vol. 40, PP. 3332-3336, 2001. 20. D.R. Sahu, “Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation,” Applied Surface Science, Vol. 253, PP. 4886-4890, 2007. 21. D.R. Sahu, “Effect of substrate temperature and annealing treatment on the electrical and optical properties of silver-based multilayer coating electrodes,”Thin Solid Films, Vol. 515, PP. 932-935, 2006. 22. M. Fahland, “Low resisitivity transparent electrodes for displays on polymer substrates,” Thin Solid Films, Vol. 392, PP. 334-337, 2001. 23. G. Leftheriotis, “Development of multilayer transparent conductive coatings,” Solid State Ionics, Vol. 136-137, PP. 655-661, 2000. 24. Y. S. Jung, “Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures,” Thin Solid Films, Vol. 440, PP. 278-284, 2003. 25. T. Tatsuma, “Photoelectromic cell with a Ag-TiO2 nanocomposite: Concepts of drawing and display modes,” Electrochemistry Communications, Vol. 9, PP. 574-576, 2007. 26. A.J. Haes, “A unified view of propagating and localized surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, Vol. 379, PP. 920-930, 2004. 27. Y. Dirix, Advanced Matterials, Vol. 11, Weily-Interscience, New York, P. 223, 1999. 28. L. Xiong, M. Ouyang, and L.Yan, and J. Li, and M.Qiu, and Y. Yu, “Visible-light energy storage by Ti 3 + in TiO2/Cu2O bilayer film,” Chemistry Letters, Vol. 38, PP. 1154-1155, 2009. 29. Weijia Zhou, Hong Liu, and Jiyang Wang, and Duo Liu, and Guojun Du, and Shujuan Han, and Jianjian Lin and Ruijun Wang, “Interface dominated high photocatalytic properties of electrostatic self-assembled Ag2O/TiO2 heterostructure,” Phys. Chem. Chem. Phys., Vol. 12, PP. 15119–15123, 2010. 30. E. Moulin, J. Sukmanowski, and M.Schulte, and A. Gordijn, and F. X. Royer, and H. Stiebig,“Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films, Vol. 516, PP. 6813-6817, 2008. 31. Barry P., “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” Journal of Applied Physics, Vol. 96, PP. 7519-7526, 2004. 32. S. Pillai, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, Vol. 101, PP.1-8, 2007. 33. K.R. Catchpole, “Surface plasmon for enhanced silicon light-emitting diodes and solar cells,” Journal of Luminescence, Vol. 121, PP. 315-318, 2006. 34. T. Tristan, “Plasmonic enhancement of silicon solar cells,” Technical Digest of the International PVSEC-17, Fukuoka, Japan, PP. 526-527, 2007. 35. E. Moulin, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” Journal of Non-crystalline Solids, Vol. 354, PP.2488-2491, 2008. 36. O. Milton, The Materials Science of Thin Films, Department of Materials Science and Engineering Stevens, Hoboken, New jersey, PP. 109-118. 37. Meng Ni, Michael K.H. Leung, and Dennis Y.C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renewable and Sustainable Energy Reviews 11, PP. 401-425, 2007. 38. 顧鴻濤, ”太陽能電池元件導論-材料.元件.製程.系統, ”全威圖書有限公司, 2008. 39. 畢無量, “In0.49Ga0.51P/GaAs/Ge三接面串接式太陽能電池之模擬與分析, ” 國立彰化師範大學光電科技研究所碩士論文, 2009. 40. 莊嘉琛, ”太陽能工程-太陽電池篇, ”全華圖書有限公司, 2007. 41. 沈輝, 曾祖勤, ”太陽能光伏發電技術, ”化學工業出版社, 2006. 42. S. Kment, P. Kluson, and Z. Hubicka, and J. Krysa, and M. Cada, and I. Gregora, and A. Deyneka, and Z. Remes, and H. Zabova, and L. Jastrabik,” Double hollow cathode plasma jet-low temperature method for the TiO2-xNx photoresponding films,” Electrochimica Acta, Vol. 55, PP. 1548–1556, 2010. 43. L. Xiong, J. Li, and Y. Yu, “Energy Storage in Bifunctional TiO2 Composite Materials under UV and Visible Light,”Energies, Vol. 2, PP. 1009-1030, 2009. 44. F. Fang, Q. Li, and J.K. Shang, “Enhanced visible-light absorption from Ag2O nanoparticles in nitrogen-doped TiO2 thin films,” Surface & Coatings Technology, Vol. 205, PP. 2919–2923, 2011. 45. F. Willig, C. Zimmermann, and S. Ramakrishna, and W. Storck, “ Ultrafast dynamics of light-induced electron injection from a molecular donor into the wide conduction band of a semiconductor as acceptor,” Electrochimica Acta, Vol. 45 PP. 4565–4575, 2000. 46. W. Zhou, H. Liu, and J. Wang, and D. Liu, and G. Du, and S. Han, and J. Lin, and R. Wang, “Interface dominated high photocatalytic properties of electrostatic self-assembled Ag2O/TiO2 heterostructure,”Phys. Chem. Chem. Phys, Vol. 12, PP. 15119–15123, 2010. 47. K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, “Phase Characterization of TiO2 Powder by XRD and TEM,” K.J. Nat. Sci., Vol. 42, PP. 357–361, 2008. 48. P.-G.Wu, C.-H. Ma, and J.K. Shang, “Effects of nitrogen doping on optical properties of TiO2 thin films,” Appl. Phys., Vol. A81, PP. 1411–1417, 2005. 49. J.F. Pierson, D. Wiederkehr, and A. Billard, “"Reactive magnetron sputtering of copper, silver, and gold,” Thin Solid Film, Vol. 478, PP. 196–205, 2005. 50. H. Tang, K. Prasad, and R. Sanjinbs, and P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., Vol. 75, PP. 2042-2047, 1994. 51. K. Obata, H. Irie, and K. Hashimoto, “Enhanced Photocatalytic Activities of Ta, N Co-Doped TiO2 Thin Films under Visible Light,” Chem. Phys., Vol. 339, PP. 124–132, 2007. 52. T. Umebayashi, T. Yamaki, and H. Itoh, and K. Asai, “ Band gap narrowing of titanium dioxide by sulfur doping.” Appl. Phys. Lett., Vol. 81, PP. 454-456, 2002. 53. J. M. Jung, M. Wang, and E. J. Kim, and S. H. Hahn, “Photocatalytic properties of Au/TiO2 thin films prepared by RF magnetron co-sputtering,” Vacuum, Vol. 82, PP. 827–832, 2008. 54. Guang-Li Wang, Jing-Juan Xu, and Hong-Yuan Chen, and Shou-Zhong Fu, “Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid,” Biosenseor and Bioelectronics., Vol. 25, PP. 791-796, 2009. 55. A.F.Wright, “Theory of copper vacancy of cuprous oxide,” Journal of Applied Physics, Vol. 92, PP. 5849-5851, 2002. 56. Tetsu Tatsuma, “Photoelectrochromic cell with a Ag-TiO2 nanocomposite Concepts of drawing and display modes,” Electrochemistry Communications, Vol. 9, PP. 574-576, 2007. 57. Mustafa H. Chowdhury, “Use of silver nanoparticles to enhance surface plasmon-coupled emission(SPCE),” Chemical Physics Letters, Vol. 452, PP. 162-167, 2008. 58. Gang Xu, “Tunable optical properties of nano-Au on vanadium dioxide,” Optics Communications, Vol. 282, PP. 1668-1670, 2008. 59. Yang Tina, “Mechanisms and applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles,” Journal of the American Chemical Society, Vol. 127, PP. 7632-7637, 2005. 60. H. Raether, Surface Plasmon, Springer, New York, 1988. 61. A.V. Zayats, “Nano-optics of surface plasmon polaritons,” Physics Reports, Vol. 408, PP.131-314, 2005. 62. J M Pitarke, “Theory of surface plasmons and surface-plasmon polarition,” Vol. 70, PP. 1-87, 2007. 63. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. 64. 吳民耀、劉威志,“表面電漿子理論與模擬”,物理雙月刊,第28 卷,第 2 期,第486-496 頁,2006. 65. 林俊佑, “表面電漿子與粒子電漿子強化之光電生物感測器”,國立中央大學機械工程學系,碩士論文,2004. 66. K.H., “Interpaticle coupling effect on plasmon resonances of nanogold particles,” Nano Letter, Vol. 3, PP. 1087-1090, 2003. 67. J.P. Kottmann, “Spectral response of plasmon resonant nanoparticles with non-regular shape,” Optics express, Vol. 6, PP. 213-219, 2000. 68. S. Kawata, Near-Field Optics and Surface Plasmon Polaritions, Springer-Verlag, 2001. 69. 邱國斌、蔡定平,“金屬表面電漿簡介”,物理雙月刊,第28 卷,第2 期,第472-486 頁,2006. 70. A.I. Maaroof, “Effective optical constants of nanostructured thin silver films and impact of an insulator coating,” Thin Solid Films, Vol. 485, PP. 198-206, 2005. 71. Gang Xu, “Tunable optical properties of nano-Au on vanadium dioxide,” Optical Communications, Vol. 282, PP.1668-1670, 2009. 72. M. Izaki, “Photochemical construction of photovoltaic device composed of p-Copper(I) oxide and z-Zinc oxide,” Journal of the Electrochemical Society, Vol. 153, PP. C668-C672, 2006. 73. A.E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous oxide-A review,” Solid-State Electronics, Vol. 29, PP. 7-17, 1986. 74. G.P. Pollack, “Photoelectric properties of cuprous oxide,” Journal of Applied Physics, Vol. 46, PP.163, 1975. 75. M.R. Wright, Ph.D thesis, Department of Chemistry, Wayne State Univ., Detroit, MI 1962. 76. V.R. Palkar, “Size-induced structural transitions in the Cu-O and Ce-O systems,” Physical Review B, Vol. 53, PP. 2167-2170, 1996. 77. R.W.G. Wyckoff, Crystal Structures, Vol. 1, Weily-Interscience, New York, 1965. 78. D. A. Kudryashov, S. N. Grushevskaya, and A. V. Vvedenskii, “Determining some structure-sensitive characteristics of nano-sized anodic Ag(I) oxide from photopotential spectroscopy,” Prot. Met., Vol. 43, PP. 591–599, 2007. 79. T-H Lin, T-T Chen, and C-L Cheng, and H-Y Lin, and Y-F Chen, “Selectively enhanced band gap emission in ZnO/Ag2O nanocomposites,” Optic. Exp., Vol. 17, PP. 4342-4347, 2009. 80. X-Y Gao., F. Liang, and M. Mina, and Z. Yuan, and L. Xiaoa, and Y-S Chen, and E. Yangshi, and G.Hua, “Analysis of the dielectric constants of the Ag2O film by spectroscopic ellipsometry and single-oscillator model,” Phys. B, Vol. 405 PP. 1922–1926, 2010. 81. Gunnar Schon, “ESCA Studies of Ag, Ag2O and AgO,” Acta Chem. Scand., Vol. 27, PP. 2623-2633, 1973. 82. Liang-Bin Xiong, Jia-Lin Li, and Bo Yang, and Ying Yu, “T i 3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application,” Journal of Nanomaterials, No. 83152, 2012. 83. GAO Xiao-Yong, LIU Xu-Wei, and WANG Song-You, “Microstructure and Optical Properties of AgxO Prepared by Direct-Current Magnetron-Sputtering Method,” CHIN.PHYS.LETT, Vol. 25, PP. 1449-1452, 2008. 84. Ullash Kumar Barik, S.Srinivasan, and C.L.Nagendra, and A.Subrahmanyam, “Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen,” Thin Solid Films, Vol. 429, PP. 129–134, 2003. 85. J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi, Vol. 15, PP. 627-637, 1966. 86. S. P. Koirala, H. H. Abu-safe, and S. L. Mensah, and H. A. Naseem, and M. H. Gordon, “Langmuir probe and optical emission studies in a radio frequency (rf) magnetron plasma used for the deposition of hydrogenated amorphous silicon,” Surface & Coatings Technology, Vol. 203, PP. 602-605, 2008. 87. M. Sarfaty, M. Harper, N. Hershkowitz, “A novel electro-optical probe to diagnose plasma uniformity,” Rev. Sci. Instrum., Vol. 69, PP. 3176-3180, 1998. 88. Yin-Yu Chang , Da-Yung Wang, Chi-Yung Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,”Surface & Coatings Technology, Vol. 200, PP. 1702 – 1708, 2005. 89. J.F. Pierson, C. Rousselot, “Stability of reactively sputtered silver oxide films,” Surf. Coat. Technol., Vol. 200, PP. 276-279, 2005. 90. Yoshio Abe, Tomoaki Hasegawa, and Midori Kawamura, and Katsutaka Sasaki, “Characterization of Ag oxide thin films prepared by reactive RF sputtering,” Vacuum, Vol. 76, PP. 1–6, 2004. 91. S.B. Rivers, G. Bernhardt, and M.W. Wright, and D.J. Frankel, and M.M. Steeves, and R.J. Lad, ”Structure, conductivity, and optical absorption of Ag2−xO films,” Thin Solid Films, Vol. 515, PP. 8684-8688, 2007. 92. M. M. Rahman, K. M. Krishna, and T. Soga, and T. Jimba, and M. Umeno, “Optical Properties and X-ray Photoelectron Spectroscopic Study of Pure and Pb-doped TiO2 Thin Films,” J. Phys. Chem. Solid., Vol. 60, PP. 201-210, 1999. 93. P. Sharma, M. Vashistha, I. P. Jain, “OPTICAL PROPERTIES OF Ge20Se80-XBiX THIN FILMS,” J. Optoelect. Adv. Mater., Vol. 7, PP. 2647-2654, 2005. 94. J. Yu, J. Xiong, and B. Cheng, and S. Liu, “Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity,” Appl. Catal. B, Vol. 60, PP. 211–221, 2005. 95. J.H. Hsieh, C.C. Tseng, and Y.K. Chang, and S.Y. Chang, and W. Wu, “ Antibacterial behavior of TaN–Ag nanocomposite thin films with and without annealing,” Surface and Coatings Technology, Vol. 202, PP. 5586-5589, 2008. 96. C.C. Tseng, J.H. Hsieh, and S.C. Jang, and Y.Y. Chang, and W. Wu, “Microstructural analysis and mechanical properties of TaN–Ag nanocomposite thin films,” Thin Solid Films, Vol. 517, PP. 4970-4974, 2009. 97. N.L. Tarwal, P.S. Patil, “Enhanced photoelectrochemical performance of Ag–ZnO thin films synthesized by spray pyrolysis technique,” Electrochimica Acta, Vol. 56, PP. 6510-6516, 2011. 98. J.F. Pierson, D. Horwat, “Influence of the current applied to the silver target on the structure and the properties of Ag–Cu–O films deposited by reactive cosputtering,” Applied Surface Science, Vol. 253, PP. 7522-7526, 2007. 99. Luying Li, Jianbo Wang, and Renhui Wang, and Huijun Liu, “Atomistic study on twinning of Cu2O quantum dots,” APPLIED PHYSICS LETTERS, Vol. 89, No. 113109, 2006. 100. Michael Nolan, Simon D. Elliott, “Tuning the electronic structure of the transparent conducting oxide Cu2O,” Thin Solid Films, Vol. 516, PP. 1468-1472, 2008. 101. J. A. Jimenez, S. Lysenko, and H. Liu, “Photoluminescence via plasmon resonance energy transfer in silver nanocomposite glasses,” J. Appl. Phys., Vol. 104, No. 054313, 2008. 102. J.F. Pierson, E. Rolin, and C. Clement-Gendarme, and C. Petitjean, and D. Horwat, “Effect of the oxygen flow rate on the structure and the properties of Ag–Cu–O sputtered films deposited using a Ag/Cu target with eutectic composition,” Applied Surface Science, Vol. 254, PP. 6590-6594, 2008. 103. E. Saucedo, C. M. Ruiz, and V. Bermudez, and E. Dieguez, and E. Gombia, and A. Zappettini, and A. Baraldi, and N. V. Sochinskii, “Photoluminescence and photoconductivity in CdTe crystals doped with Bi,” J. Appl. Phys., Vol. 100, No. 104901, 2006. 104. K. Akimoto, S. Ishizuka, and M. Yanagita, and Y. Nawa, and Goutam K. Paul, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells,” Solar Energy, Vol. 80, PP. 715-722, 2006. 105. J. Tauc, “Optical properties and electronic structure of amorphous ge and si,” Mater. Res. Bull., Vol. 3, PP. 37-46, 1968. 106. C. C. Tseng, J. H. Hsieh, and S. J. Liu, and W. Wu, “Effects of Ag contents and deposition temperatures on the electrical and optical behaviors of Ag-doped Cu2O thin films,” Thin Solid Films, Vol. 518, PP. 1407-1410, 2009. 107. C. C. Tseng, J. H. Hsieh, and C. H. Lin, and W. Wu, “Effects of deposition and annealing temperatures on the electrical and optical properties of Ag2O and Cu2O–Ag2O thin films,” J. Vac. Sci. Technol. A, Vol. 28, PP. 791-794, 2010. 108. Hyun-Jin Cho, Kyung-Woo Park, and Jun-Ku Ahn, and Nak-Jin Seong, and Soon-Gil Yoon, and Won-Ho Park, and Sung-Min Yoon, and Dong-Jun Park, and Jeong-Yong Lee, “Nanoscale Silver-Based Al-Doped ZnO Multilayer Transparent-Conductive Oxide Films, ” Journal of The Electrochemical Society, Vol. 156, PP. J215-J220, 2009. 109. Guang Yang, Youhua Zhou, and Hua Long, and Yuhua Li, and Yifa Yang, “Optical nonlinearities in Ag/BaTiO3 multi-layer nanocomposite films,” Thin Solid Films, Vol. 515, PP. 7926-7929, 2007. 110. Jin-A Jeong, Jae-Young Lee, and Han-Ki Kim, “Inverted OLED with Low Resistance IZO–Ag–IZO Top Anode Prepared by Linear FTS System at Room Temperature,” Electrochemical and Solid-State Letters, Vol. 12, PP. J105-J108, 2009. 111. Daeil Kim, “The structural and optoelectrical properties of TiON/Au/TiON multilayer films,” Materials Letters, Vol. 64, PP. 668-670, 2010. 112. Daeil Kim, “Characterization of low pressure annealed ITO/Au/ITO films prepared by reactive magnetron sputtering,” Journal of Alloys and Compounds, Vol. 493, PP. 208-211, 2010. 113. M. D. McCluskey, L. T. Romano, and B. S. Krusor, and N. M. Johnson, and T. Suski, and J. Jun, “Interdiffusion of In and Ga in InGaN quantum wells,” Appl. Phys. Lett., Vol. 73, PP. 1281-1283, 1998. 114. LINZHANG WU, WEI TIAN, and XIAOTAO JIANG, “Investigation on the performances of multi-quantum barriers in a single quantum well solar cell,” JOURNAL OF MATERIALS SCIENCE, Vol. 40, PP. 1451-1454, 2005. 115. A. Freundlich, A. Fotkatzikis, and L. Bhusal, and L. Williams, and A. Alemu, and W. Zhu, and J.A.H. Coaquira, and A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” Journal of Crystal Growth, Vol. 301-302, PP. 993-996, 2007. 116. Kazehiko Anazawa, Sodabanlu Hassanet, and Katsushi Fujii, and Yoshiaki Nakano, and Masakazu Sugiyama, “Growth of strain-compensated InGaN/AlN multiple quantum wells on GaN by MOVPE,” Journal of Crystal Growth, Vol. 370, PP. 82-86, 2013. 117. Noriyuki Watanabe, Haruki Yokoyama, and Naoteru Shigekawa, and Ken-ichi Sugita, and Akio Yamamoto, “Barrier Thickness Dependence of Photovoltaic Characteristics of InGaN/GaN Multiple Quantum Well Solar Cells,” Japanese Journal of Applied Physics, Vol. 51, PP. 1-5, 2012. 118. Yuko Tachibana, Kouji Kusunoki, and Toshiya Watanabe, and Kazuhito Hashimoto, and Hisashi Ohsaki, “Optical properties of multilayers composed of silver and dielectric materials,” Thin Solid Films, Vol. 442, PP. 212-216, 2003. 119. YONG Xu, MARTIN A.A. Schoonen, “The absolute energy position of conduction and valence bands of selected semiconducting minerals,” American Mineralogist, Vol. 85, PP. 543-556, 2000. 120. C. C. Tseng, J. H. Hsieh, and W. Wu, “Microstructural analysis and optoelectrical properties of Cu2O, Cu2O–Ag, and Cu2O/Ag2O multilayered nanocomposite thin films,” Thin Solid Films, Vol. 519, PP. 5169-5173, 2011. 121. Jaroslav Pavlik, Rudolf Hrach, and Pavel Hedbavny, and Petr Š‧ovieek, “Study of argon/oxygen plasma used for creation of aluminium oxide thin films,” Superficiesy Vacio, Vol. 9, PP. 131-134, 1999. 122. Bong-Yong Jeong, Min-Sun Hwang, and Chongmu Lee, and Myung-Ho Kim, “Roughness of the surface layers of plasma oxidation-treated ductile cast iron,” Surface and Coatings Technology, Vol. 135, PP. 279-285, 2001. 123. Kakizaka S., Sakamoto T., and Matsuura H., and Akatsuka H., “Titanium Oxidation by Microwave Discharge Oxygen Plasma and Relationship with Plasma Parameters,” JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, Vol. 10, PP. 253-259, 2007. 124. V. Hrachova, A. Kaoka, “Study of the admixture influence on the oxygen spectra properties,” Vacuum, Vol. 48, PP. 689-692, 1997. 125. VICTOR DRITS, JAN SRODON, AND D. D. EBERL, “XRD MEASUREMENT OF MEAN CRYSTALLITE THICKNESS OF ILLITE AND ILLITE/SMECTITE: REAPPRAISAL OF THE KUBLER INDEX AND THE SCHERRER EQUATION,” Clays and Clay Minerals, Vol. 45, PP. 461-475, 1997. 126. Y. Abdu, and A.O Musa, “COPPER (I) OXIDE (Cu2O) BASED SOLAR CELLS - A REVIEW,” Bayero Journal of Pure and Applied Sciences, Vol. 2, PP. 8-12, 2009.
摘要: Cu2O為直接能隙之P型氧化物半導體材料,波長高於500nm有高的穿透而波長低於500nm有高的吸收,此氧化物半導體為無毒材料、生產成本低,而理論光電轉換效率為20%,因此一般認為可應用於異質介面氧化物薄膜太陽能電池的吸收層。目前文獻報導效率已達到6%,商業化前景可期。 為了要提高Cu2O對可見光範圍的吸收與增加光電轉換效率,本研究希望摻雜Cubic-Ag2O來改善其光學性質,並利用能隙的特性來使光電轉換效率增加;理論上由於Cu2O能隙為2.3eV與Cubic-Ag2O能隙為1.6eV,故其薄膜形成Cu2O-Ag2O混合相時,於可見光範圍能提高光學吸收,並增強光電轉換效率;主要因為Ag2O受光激容易產生電子電洞對,其電子會從Cu2O半導體的導帶遷移至Ag2O半導體的導帶,而電洞則是由Ag2O半導體的價帶遷移至Cu2O半導體的價帶,因此能減少電子-電洞對的再結合。 實驗中利用直流反應式濺鍍與電漿氧化處理,分別成功製備Cu2O薄膜和Cu2O-Ag2O薄膜於玻璃(或ITO玻璃),運用X光繞射技術(X-ray diffractometer, XRD)、穿透式電子顯微鏡(Transmission electron microscopy, TEM)和場發射電子顯微鏡(Field-Emission Scanning Electron Microscopy, FE-SEM)來檢測薄膜微結構的變化,使用紫外光-可見光分光光譜儀(UV-Vis Spectrophotometer)與光致螢光光譜儀(Photoluminescence Spectrophotometer)分析薄膜的光學特性,運用光電轉換效率分析儀器(incident photon to current efficiency, IPCE)和光電化學量測系統(photoelectrochemistry measurement system, PEC)來測量薄膜的光電性質。 由微結構分析得知,Ag2O易受溫度而分解,故Ag2O須於低溫沉積;由TEM分析中發現Cu2O-Ag2O-Ag奈米複合薄膜內有Cu2O、Ag2O和少量的Ag;從PL結果可發現Cu2O-Ag2O-Ag(4 at.%)產生較多的電子-電洞對導致光電流增加;此可確認Ag2O和Cu2O混合時,能提高光學吸收並增加電子-電洞對,此是因為窄能隙的Ag2O所導致;最後藉由光電流和量子效率的增加證實此複合薄膜之效應,故Ag2O和Cu2O之氧化物半導體複合薄膜應可應用於太陽能電池之吸收層。此外,藉由Cu2O/Ag2O多層膜之製作亦證明此二氧化物之異質介面效應。 最後,從研究結果可以觀察到電漿氧化方式能製備出缺陷較少的Cu2O薄膜,優於磁控濺鍍方式,本研究證明可利用其來製備結構較佳之Cu2O-Ag2O薄膜;而GZO/Cu2O-Ag2O之p-n薄膜異質介面結構的電流增加率比GZO/Cu2O薄膜較高,因此確認未來可利用Cu2O-Ag2O薄膜於太陽能電池的吸收層來提高光電轉換效率。
Cu2O is a P-type semiconductor with a direct band gap and it has a high optical transparency at wavelength above 500 nm and with a high absorption coefficient at the wavelength below. The oxide semiconductor is a non-toxic material, and having a low production cost. The theoretical photo-electrical conversion efficiency of 20% makes it possible to be used as an absorber layer in thin film solar cells. According to a recent report, Cu2O-based oxide heterojunction solar cells with higher than 6% conversion efficiency have been fabricated. This opens up a new interest in further optimizing the opto-electronic properties of Cu2O films. This study aims at a new approach to enhance optical absorption of Cu2O films in visible light range, and increase their photon-to-current efficiency. In the present attempt, the opto-electronic properties are expected to be improved by mixing cubic-Ag2O with Cu2O. The increase of photon-to-current efficiency can be achieved by band gap engineering. The band gaps of Cu2O and Cubic-Ag2O are 2.3 eV and 1.6 eV, respectively. When the heterojunction of Cu2O-Ag2O is formed, the optical absorption of visible light as well as the photon-to-current efficiency can be enhanced. This is because that the conduction band (CB) electrons can be injected from Cu2O to Ag2O. Oppositely, the valence band (VB) holes can be injected from Ag2O to Cu2O. In the experiment, Cu2O and Cu2O-Ag2O thin films were prepared by DC-reactive magnetron sputtering and a plasma oxidation process on glass substrates (or ITO glass). After deposition, the microstructure of the films was examined using X-ray diffractometry, transmission electron microscopy (TEM) and Field-Emission Scanning Electron Microscopy (FE-SEM). A UV-VIS-NIR photometer and a Photoluminescence measurement system were used to characterize the optical and electrical properties of these films. An incident photon-to-current efficiency (IPCE) system and a photoelectrochemistry measurement system (PEC) were used to characterize the opto-electrical properties of these films. The microstructure study using TEM revealed that Ag2O films were to decompose during a thermal treatment at temperatures higher than 250 oC. The Ag2O films hence have to be deposited at low temperature. The Cu2O-Ag2O-Ag nanocomposite consisted of Cu2O, Ag2O, and small amount of Ag phases. The results of Photoluminescence (PL) measurement confirmed that the Cu2O-Ag2O-Ag(4 at.%) sample might produce more electron-hole pairs than other samples, which caused the increase of photo-current. The coupling of Ag2O phase with Cu2O could enhance light absorption and created more electron-hole pairs due to the small band gap of Ag2O. The effects of Cu2O-Ag2O interface is verified on the enhanced photocurrent and quantum efficiency (IPCE). The Cu2O-Ag2O nanocomposite films can therefore be used as the active absorption layer in Cu2O-based solar cells. Finally, the results revealed that plasma oxidation could be used to prepare Cu2O films with fewer defects than those produced by reactive magnetron sputtering. In this part of study, it was also proved that Cu2O-Ag2O thin films with fewer defects can be prepared through plasma oxidation. By using GZO/Cu2O-Ag2O thin films as an oxide p-n heterojunction, the ratio increase of current of the GZO/Cu2O-Ag2O thin films under illumination was higher than that of the GZO/Cu2O thin films. This result implies that the Cu2O-Ag2O thin films could be used to increase photovoltaic effect on oxide solar cells.
其他識別: U0005-2506201316073700
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.