Please use this identifier to cite or link to this item:
標題: Cu2ZnSnS4粉體的合成及其反應機制之研究
Synthesis and Reaction Mechanism of Cu2ZnSnS4 Powders
作者: 黃丞甫
Huang, Cheng-Fu
關鍵字: 太陽能電池
Solar cell
出版社: 材料科學與工程學系所
引用: 1. 黃惠良與曾百亨, “太陽能電池,” 五南圖書,(2008) 2. J. Zhao, A. Wang, and M. A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates,” Prog. Photovolt: Res. Appl., 7, 471-474 (1999). 3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New World Record Efficiency for Cu(In,Ga)Se2 Thin-Film Solar Cells beyond 20%,” Prog. Photovolt: Res. Appl., 19, 894-897 (2011). 4. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, “ Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique,” Appl. Phys. Express, 1, 041201-2 (2008). 5. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally Evaporated Cu2ZnSnS4 Solar Cells,” Appl. Phys. Lett., 97, 143508-3 (2010). 6. B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, and H. W. Schock, “Cu2ZnSnS4 Thin Film Solar Cells by Fast Coevaporation,” Prog. Photovolt: Res. Appl., 19, 93–96 (2011). 7. T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, and H. Ogawa, “Fabrication of Cu2ZnSnS4 Thin Films by Co-evaporation,” Phys. Stat. Sol. (c), 3, 2844-2847 (2006). 8. S. M. Pawar, A.V. Moholkar, I. K. Kim, S. W. Shin , J. H. Moon, J. I. Rhee, and J. H. Kim, “Effect of Laser Incident Energy on The Structural Morphological and Optical Properties of Cu2ZnSnS4 (CZTS) Thin Films,” Curr. Appl. Phys., 10, 565-569 (2010). 9. K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, “Chemical Composition Dependence of Morphological and Optical Properties of Cu2ZnSnS4 Thin Films Deposited by Sol–Gel Sulfurization and Cu2ZnSnS4 Thin Film Solar Cell Efficiency,” Sol. Energy Mater. Sol. Cells, 95, 838-842 (2011). 10. M. Y. Yeh, C. C. Lee, and D. S. Wuu, “Influences of Synthesizing Temperatures on The Properties of Cu2ZnSnS4 Prepared by Sol–Gel Spin-Coated Deposition,” J. Sol-Gel Sci. Technol., 52, 65-68(2009). 11. A. Fischereder, T. Rath, W. Haas, H. Amenitsch, J. Albering, D. Meischler, S. Larissegger, M. Edler, R. Saf, F. Hofer, and G. Trimmel, “Investigation of Cu2ZnSnS4 Formation from Metal Salts and Thioacetamide,” Chem. Mat., 22, 3399-3406 (2010). 12. S. M. Pawar, B. S. Pawar, A. V. Moholkar, D. S. Choi, J. H. Yun, J. H. Moon, S. S. Kolekar, and J. H. Kim, “Single Step Electrosynthesis of Cu2ZnSnS4 (CZTS) Thin Films for Solar Cell Application,” Electrochim. Acta, 55, 4057-4061 (2010). 13. J. J. Scragg, D. M. Berg, and P. J. Dale, “A 3.2 % Efficient Kesterite Device from Electrodeposited Stacked Elemental Layer,” J. Electroanal. Chem., 646, 52-59 (2010). 14. Y. B. K. Kumar, G. S. Babu, P. U. Bhaskar, and V. S. Raja, “Effect of Starting-Solution pH on The Growth of Cu2ZnSnS4 Thin Films Deposited by Spray Pyrolysis,” Phys. Status Solidi A-Appl. Mat.,206, 1525-1530 (2009). 15. H. Wang, “Progress in Thin Film Solar Cells Based on Cu2ZnSnS4,” Int. J. Photoenergy, 2011, 1-10 (2011). 16. S. Schorr, “Structural Aspects of Adamantine Like Multinary Chalcogenides,” Thin Solid Films, 515, 5985-5991 (2007). 17. S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, “Defect Physics of the Kesterite Thin-Film Solar Cell Absorber Cu2ZnSnS4,” Appl. Phys. Lett., 96, 021902-3 (2010). 18. I. D. Olekseyuk, I. V. Dudchak, and L. V. Piskach, “Phase Equilibria in The Cu2S–ZnS–SnS2 System,” J. Alloy. Compd., 368, 135-143 (2004). 19. E. Ito, and T. Nakazawa, “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films,” Jpn. J. Appl. Phys., 27, 2094-2097 (1988). 20. T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, and H. W. Schock, “Heterojuncitons Based on Cu2ZnSnS4 and Cu2ZnSnSe4 Thin Films,” in Proceedings of the 14th European Conference of Photovoltaic Science and Engineering and Exhibition, 1997. 21. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, “Development of Thin Film Solar Cell Based on Cu2ZnSnS4 Thin Films,” Sol. Energy Mater. Sol. Cells, 65, 141-148 (2001). 22. H. Katagiri, K. Jimbo, K. Moriya, and K. Tsuchida, “Solar Cell Without Environmental Pollution by Using CZTS Thin Film.” 3rd World Conference on Photovoltaic Energy Conversion, 3, 2874-2879 (2003). 23. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber,” Adv. Mater., 22, E156-9 (2010). 24. J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and Optical Properties of Cu2ZnSnS4 Thin Films Prepared by RF Magnetron Sputtering Process,” Sol. Energy Mater. Sol. Cells, 75, 155-162 (2003). 25. H. Katagiri, N. Ishigaki, T. Ishida, and K. Saito, “Characterization of Cu2ZnSnS4 Thin Films Prepared by Vapor Phase Sulfurization,” Jpn. J. Appl. Phys., 40, 500-504 (2001). 26. N. Nakayama, and K. Ito, “Sprayed Films of Stannite Cu2ZnSnS4,” Appl. Surf. Sci., 92, 171-175 (1996). 27. N. Kamoun, H. Bouzouita, and B. Rezig, “Fabrication and Characterization of Cu2ZnSnS4 Thin Films Deposited by Spray Pyrolysis Technique,” Thin Solid Films, 515, 5949-5952 (2007). 28. Y. B. K. Kumar, G. S. Babu, P. U. Bhaskar, and V. S. Raja, “Preparation and Characterization of Spray-Deposited Cu2ZnSnS4 Thin Films,” Sol. Energy Mater. Sol. Cells, 93, 1230-1237 (2009). 29. K. Tanaka, N. Moritake, and H. Uchiki, “Preparation of Cu2ZnSnS4 Thin Films by Sulfurizing Sol–Gel Deposited Precursors,” Sol. Energy Mater. Sol. Cells, 91, 1199-1201 (2007). 30. K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Cu2ZnSnS4 Thin Film Solar Cells Prepared by Non-Vacuum Processing,” Sol. Energy Mater. Sol. Cells, 93, 583-587 (2009). 31. J. J. Scragg, P. J. Dale, and L. M. Peter, “Towards Sustainable Materials for Solar Energy Conversion: Preparation and Photoelectrochemical Characterization of Cu2ZnSnS4,” Electrochem. Commun., 10, 639-642 (2008). 32. S. C. Riha, B. A. Parkinson, and A. L. Prieto, “Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals,” J. Am. Chem. Soc., 131, 12054-12055 (2009). 33. T. Kameyama, T. Osaki, K. I. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, “Preparation and Photoelectrochemical Properties of Densely Immobilized Cu2ZnSnS4 Nanoparticle Films.” J. Mater. Chem., 20, 5319-5324 (2010). 34. C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics,” J. Am. Chem. Soc.,131, 12554-12555 (2009). 35. M. Cao, Y. Shen, “A Mild Solvothermal Route to Kesterite Quaternary Cu2ZnSnS4 Nanoparticles,” J. Cryst. Growth, 318, 1117-1120 (2011). 36. K. Moriya, K. Tanaka, and H. Uchiki, “Characterization of Cu2ZnSnS4Thin Films Prepared by Photo-Chemical Deposition,” Jpn. J. Appl. Phys., 44, 715-717 (2005). 37. Z. Yao, X. Zhu, C. Wu, X. Zhang, and Y. Xie, “Fabrication of Micrometer-Scaled Hierarchical Tubular Structures of CuS Assembled by Nanoflake-built Microspheres Using an In Situ Formed Cu(I) Complex as a Self-Sacrificed Template,” Cryst. Growth Des., 7, 1256-1261 (2007). 38. E. H. Swift and F. C. Anson, “The reactions of certain metals with thioacetamide,” Talanta, 3, 296-297 (1960). 39. M. T. S. Nair, L. Guerrero and P. K. Nair, “Conversion of chemically deposited CuS thin films to and by annealing,” Semicond. Sci. Technol., 13, 1164-1169 (1998).
摘要: 本研究選用氯化銅(Copper(II) chloride, CuCl2)、氯化鋅(Zinc(II) chloride, ZnCl2)、五水合氯化錫(Stannic(IV) Chloride, SnCl4.5H2O)與硫代乙烯胺(Thioacetamide, TAA)為前驅鹽,並以去離子水與乙醇之混和溶液作為溶劑,成功合成出Cu2ZnSnS4(CZTS)粉體。吾人藉由改變CZTS前驅物溶液之反應溫度發現,於65 oC反應1小時,並於氬氣的氣氛煅燒550 ¬oC後,可獲得純相之CZTS粉體;於35-55 oC的反應溫度下,會有過量的六角柱狀結構之Cu3(TAA)3Cl3中間相,導致CZTS前驅物在高溫煅燒後會有Cu2S之不純相產生。利用濾紙過濾移出六角柱狀構之中間相,獲得殘留之球狀沉澱物,於氬氣氣氛煅燒至450 oC後,合成出Cu2SnS3(CTS)粉體,並非吾人所預期之CZTS粉體,推論Zn是以離子態Zn2+之形式存在於溶液中,故欲獲得CZTS粉體,必須將含有Zn2+之溶液與沉澱物一同煅燒。藉由改變煅燒溫度發現,當煅燒溫度達210 oC時,開始形成CZTS之結晶結構,提升煅燒溫度至250 oC時,僅顯現屬於CZTS主要晶面(112)、(200)、(220)及(312)之繞射峰,且並無其他不純物之結晶相。為了討論合成CZTS之反應機構,吾人分別將氯化銅、氯化鋅、氯化錫、氯化銅+氯化鋅、氯化銅+氯化錫與TAA混合後,於65 oC反應1小時,並選取190 oC及250 oC進行煅燒,利用XRD晶相繞射分析發現,當煅燒溫度升高時,(1) Cu原子由2價Cu2+還原成1價Cu+,並與S2-鍵結形成Cu2S;(2) (NH4)2ZnCl4 → ZnS;(3) (NH4)2SnCl6 → SnS2,而Cu2S會先與SnS2反應形成CTS之結晶結構後,再與ZnS反應合成CZTS粉體。
Cu2ZnSnS4 (CZTS) powders have been synthesized from aqueous solutions consisting of copper (II) chloride, zinc (II) chloride, stannic (IV) chloride, and thioacetamide (TAA) dissolved in mixtures of deionized water and ethanol. The CZTS powders were obtained when the precursor solutions were held isothermally at 65 oC followed by annealing at 550 oC in Ar atmosphere. When the reaction temperature was held at 35 to 55 oC, a pronounced formation of intermediate Cu3(TAA)3Cl3 prisms resulted which produced Cu2S at elevated temperatures as an impurity. In addition, rounded particles were obtained from the CZTS precursor solutions by filtering removal of the Cu3(TAA)3Cl3 prisms. Since Zn was present as Zn2+ ions in the reaction solution, Cu2SnS3 (CTS) resulted rather than the formation of CZTS when the rounded particles were annealed at 450 ¬oC. Therefore, a successful synthesis of the CZTS powders requires annealing of the solution containing Zn2+ and the precipitate in the same pot. From thermal analyses, crystalline CZTS powders began to form as the annealing temperature was raised above 210 oC. XRD pattern revealed that the CZTS diffraction peaks appeared when the annealing temperature was raised to 250 oC and no other phases were observed. We have also conducted separate experiments involving CuCl2, ZnCl2, SnCl4, CuCl2+ZnCl2, CuCl2+SnCl4 mixture with the TAA respectively and reacted isothermally at 65 oC for 1 h. After the reaction, the solutions were annealed at 190 oC and 250 oC, respectively. When the annealing temperature was increased, following reaction steps resulted: (1) Cu2+ ions were firstly reduced to Cu+ which facilitated Cu2S formation;(2) (NH4)2ZnCl4 → ZnS;(3) (NH4)2SnCl6 → SnS2. The Cu2S reacted with SnS2 to form CTS first, and then CTS reacted with ZnS to form the CZTS powders.
其他識別: U0005-2008201215582100
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.