Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11284
標題: FePt(B4C-Ag)及FePt(BOx-Ag)顆粒薄膜之磁性與微結構研究
Magnetic properties and microstructure of FePt(B4C-Ag) and FePt(BOx-Ag) granular films
作者: 蔡文傑
Tsai, Wen-Chieh
關鍵字: 鐵白金
FePt
硼碳
顆粒膜
垂直式記錄媒體
B4C
Granular films
Perpendicular recording media
出版社: 材料科學與工程學系所
引用: [1] Roger Wood, J. Magn. Magn. Magn., Vol.321, 555 (2009). [2] S. H. Charap, Pu-Ling Lu, and Yanjun He, IEEE Trans. Magn., Vol.33, No. 1 (1997). [3] Shun-ichi Iwasaki and Katsumaro Takemura, IEEE Trans. Magn., Vol.11, No. 5 (1975). [4] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J-U Thiele and M. F. Doerner, IEEE Trans. Magn., Vol.36, No. 1 (2000). [5] B. Zhang and W. A., IEEE Trans. Magn., Vol.6, No. 1 (2000). [6] J. A. Christodoulides, Y. Huang, Y. Zhang, G. C. Hadjipanayis, I. Panagiotopoulos and D. Niarchos, J. Appl. Phys. ,Vol. 87, No. 9 (2000). [7] N. Li, B. M. Lairson, Oh-Hun Kwon, J. Magn. Magn. Magn., Vol.205, 1-6 (1999). [8] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys. ,Vol. 92, No. 10 (2002). [9] M. Daniil, P.A. Farber, H. Okumura, G.C. Hadjipanayis, D. Weller, J. Magn. Magn. Magn., Vol.246, 297-302 (2002). [10] M. L. Yan, H. Zeng, N. Powers, and D. J. Sellmyer, J. Appl. Phys. ,Vol. 91, No. 10 (2002). [11] M. Hansen, “Constitution of Binary Alloys”, McGraw. New York., P.698 (1958). [12] U. Kawald, W. Zemke, H. Bach, J. Pelzl and G. A. Saunders, Phsyica B, Vol. 161, 72 (1989). [13] B. E. Warren, “X-ray Diffraction”, Dover, New York, P. 227, (1990). [14] 引用資料來源網址” http://www.matweb.com/search/PropertySearch.aspx” [15] A. Erdemir, C. Bindal, and G. R. Fenske, Appl. Phys. Lett., Vol.68, 1637 (1996). [16] 金重勳、李景明、張慶瑞,”磁性技術手冊”,中華民國磁性技術協會,2002年。 [17] N. A. Spaldin, Magnetic Material, P. 17 (2011). [18] 許樹恩、吳泰伯合著,”X光繞射原理與材料結構分析”第十三章,2006年。 [19] B.D. Cullity, “introduction to magnetic materials”, Ch7, Wesley (1972). [20] D.E.Gray, McGraw-Hill, “American Institute of Physics Handbook” (1972). [21] M.J. Clerk, Atreatise on Electicity and magnetism, Vol. 2, 1006 (1954). [22] E. P. Wohlfarth, J. Appl. Phys. ,Vol. 29, 595 (1958). [23] K. Takanashi, M. Watanabe and H. Fujimori, J. Magn. Magn. Magn., Vol.104, 1749 (1992). [24] M.R. Visokay, B.M. Lairson, B.M. Clemens and R. Sinclair, J. Magn. Magn. Magn., Vol.126, 1136 (1993). [25] S. Mitani, K. Takanashi, M. Sano, H. Fujimori, A. Osawa, H. Nakajima, J. Magn. Magn. Magn., Vol.148, 163 (1995). [26] M. H. Hong, K. Hono, M. Watanabe, J. Appl. Phys. ,Vol. 84, No. 8 (1998). [27] Toshio Suzuki, Kiko Harada, Naoki Honda, Kuzuhiro Ouchi, J. Magn. Magn. Magn., Vol.193, 85 (1999). [28] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett., Vol.81, 1050 (2002). [29] T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, Appl. Phys. Lett., Vol.80, 288 (2002). [30] Yingfan Xu, J. S. Chen, and J. P. Wang, Appl. Phys. Lett., Vol.80, 3325 (2002). [31] J.S. Chena, B.C. Lim, Y.F. Ding, G.M. Chow, JMMM., Vol.303, 309 (2006). [32] P. Rasmussen, X. Rui, and J. E. Shield, Appl. Phys. Lett., Vol.86, 191915 (2005). [33] Jae-Song Kim, Yang-Mo Koo, Byeong-Joo Lee, and Seong-Rae Lee, J. Appl. Phys., Vol.99, 053906 (2006). [34] Jae-Song Kim, Yang-Mo Koo, and Namsoo Shin, J. Appl. Phys., Vol.100, 093909 (2006). [35] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 1, American Society For Metals, second printing (1987). [36] S.-C. Chen, P.C. Kuo, A.C. Sun, C.T. Lie, W.C. Hsu, Materials Science and Engineering B, 88, 91 (2002) [37] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, and J. P. Wang, Appl. Phys. Lett., Vol.83, 2196 (2003). [38] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard A. G. Roy and D. E. Laughlin, J. Appl. Phys., Vol.92, No.10 (2002). [39] T. Yang, E. Ahmad, and T. Suzuki, J. Appl. Phys., Vol.91, 6860 (2002). [40] Zhengang Zhang, Kyongha Kang, and Takao Suzuki, J. Appl. Phys., Vol.93, 7163 (2003). [41] Z.L. Zhaoa, J.S. Chena, J. Dingb, K. Inabac, J.P. Wang, J. Magn. Magn. Magn., Vol.282, 105 (2004). [42] Z. L. Zhao, J. Ding, J. B. Yi, J. S. Chen, J. H. Zeng, J. P. Wang, J. Appl. Phys., Vol.97, 10H502 (2005). [43] Z. L. Zhao, J. S. Chen, J. Ding, J. B. Yi, B. H. Liu, J. P. Wang, Appl. Phys. Lett., Vol.88, 052503 (2006). [44] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys., Vol.100, 056105 (2006). [45] Li Zhang, Y.K. Takahashi, A. Perumal, K. Hono, J. Magn. Magn. Magn., Vol.322, 32658 (2010). [46] J. S. Chen, Y. Z. Zhou, C. J. Sun, S.-W. Han, and G. M. Chow, Appl. Phys. Lett., Vol.98, 131914 (2011). [47] F. Yang, H. Wang, H. Wang, X. Cao, C. Yang, Q. Li, M. Zhou, Y. M. Chong and W. J. Zhang, Journal of Physics D: Applied Physics, Vol.40, 6735 (2007) [48] F. J. Yang, Hao Wang, H. B. Wang, X. Cao, C. P. Yang et al., J. Appl. Phys., Vol.102, 106101 (2007). [49] J. Zhang, H. Ding, S. Q. Li, Q. T. Li, H. B. Wang et al., J. Appl. Phys., Vol.113, 17C108 (2013). [50] C. P. Luo, S. H. Liou, L. Gao, Y. Liu, D. J. Sellmyer, Appl. Phys. Lett., Vol.77, 14 (2000). [51] H. Zeng, R. Sabirianov, O. Mryasov, M. L. Yan, K. Cho, and D. J. Sellmyer, Physical Review B, 66, 184425 (2002). [52] T. Ichitsubo, S. Tojo, T. Uchihara, and E. Matsubara, Physical Review B, 77, 094114 (2008). [53] 引用資料來源網址” http://www.bruker-axs.com, Bruker AXS” [54] 蕭世男,初始應力/應變態對鐵鉑薄膜其序化轉變與動力學之影響,逢甲大學博士論文,中華民國一百年三月。 [55] Yun-Chung Wu, Liang-Wei Wang, Chih-Huang Lai, and Ching-Ray Chang., J. Appl. Phys., Vol.102, 106101 (2007). [56] Chih-Huang Lai, Cheng-Han Yang, C. C. Chiang, T. Balaji, and T. K. Tseng, Appl. Phys. Lett., Vol.85, 4430 (2004). [57] C.W. Hsu, S.K. Chen, W.M. Liao, F.T. Yuan, W.C. Chang, J.L. Tsai, and Ching-Ray Chang., J. Appl. Comp., Vol.449, 52 (2008). [58] 引用資料來源網址” http://www.lakeshore.com” [59] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, second edition, p.68 (2009). [60] 引用資料來源網址”國立中興大學奈米中心網站” [61] D. B. W. a. C. B. Carter, Transmission Electron Microscopy: Plenum Press, New York and London (1996). [62] 潘扶民,汪建民,”材料分析”,中國材料科學學會,第十三章,1998年。 [63] F. Yang, H. Wang, H. Wang, X. Cao, C. Yang, Q. Li, M. Zhou, Y. M. Chong and W. J. Zhang, Journal of Physics D: Applied Physics, Vol.40, 6735 (2007) [64] M.M. Ennaceur, B. Terreault, Journal of Nuclear Materials, 280, 33 (2000). [65] Brainard W.A., Wheeler D.R.J. Vac. Sci. Technol. 15, 1801 (1978). [66] Chen L., Goto T., Hirai T., Amano T.J. Mater. Sci. Lett. 9, 997 (1990). [67] I.A. Dean (Ed.), Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York (1992). [68] Brion. D, Appl. Surf. Sci, Vol.5, 133 (1980). [69] Oku M., Hirokawa K., J. Electron Spectrosc. Relat. Phenom. 8, 475 (1976). [70] L. Han, U. Wiedwald, B. Kuerbanjiang and P. Ziemann, Nanotechnology, Vol.20, 285706 (2009) [71] A. Yu. Dobin and H. J. Richter, Appl. Phys. Lett., Vol.89, 062512 (2006). [72] Jai-Lin Tsai, Hsin-Te Tzeng, and Guo-Bin Lin. J. Appl. Phys., Vol.107, 09A713 (2010). [73] Jai-Lin Tsai, Hsueh-Wei Tai, and Hsin-Te Tzeng J. Appl. Phys., Vol.109, 09A713 (2011).
摘要: 本實驗主要為探討在FePt膜層中加入第三項化合物以達成良好晶粒分隔及晶粒大小均勻顆粒膜,分兩部分進行;第一部分為利用B4C作為分隔物,以磁控濺鍍的方式交錯沉積多層膜[FePt(2.5nm)/B4C(tnm)]4 (t= 0-1)以及[FePt(2.5 nm)/(B4C)y(Ag)1-y(0.25 nm)]4 (y=0-1) 的膜層結構在非晶玻璃基板上,並經過快速升溫退火系統800oC持溫3分鐘,得到具有垂直磁晶異向性的FePt(B4C)和FePt(B4C-Ag)顆粒薄膜。結果顯示不互溶的(B4C, Ag)添加物可分隔FePt晶粒並維持晶格中c軸排列。B4C化合物鍵結為強共價鍵,非常堅硬並具高熔點的陶瓷材料,加入後可避免退火後軟磁相FeB的生成。微量添加的Ag與Fe及Pt相較下因具有較高的遷移率,可促進序化。在(FePt)90 [(B4C)0.7Ag0.3)]10的膜層比例中得到平均晶粒大小為14.7 nm的顆粒薄膜。另一系列的實驗中為改變穿插層的層數由四層提升為十層,膜層結構如[FePt/B4C(tnm)]10 (t= 0-0.4)以及[FePt/(B4C)yAg1-y (0.1nm)]10 (y = 0.2-0.8),經氬氣氛下退火,形成具垂直磁晶異向性(Hc//=12.8 kOe, Hc//=4.1kOe)及良好的c軸對稱性(LOF=0.96)的FePt(B4C)和FePt(B4C-Ag)顆粒薄膜。B4C的添加使FePt晶粒微結構由連續膜轉變為迷宮狀的膜層但晶界卻不夠明確,直到微量Ag添加後使FePt晶粒分隔形成FePt的顆粒薄膜,並在(FePt)90[(B4C)0.2Ag0.8)]10 膜層比例中得到平均晶粒大小為10.6 nm的顆粒薄膜。 第二部分為研究在使用磁性濺鍍以交錯沉積的方式製備[FePt(1nm)/B(0.1 nm)]10以及[FePt(1nm)/B(0.7nm)-Ag(0.3nm)]10膜層結構。在沉積B或B-Ag時分別通入(0, 0.5, 1, 3, 5, 7)百分比例之氧通量,以避免經快速升溫製程800oC持溫3分鐘退火後軟磁相FeB的生成;觀察FePt膜層在電漿氧化後所產生之磁性質與微結構上的變化。在FePt(B, Ag)系列中,可觀察到通入氧後的膜層,B氧化物以及Fe氧化物皆形成,當氧通量小於1%時,微結構為迷宮狀,晶粒大小由8.1 nm上升至10.1 nm。當氧通量大於3%後晶粒大小下降至4~5 nm,但垂直方向的矯頑磁力由15.0 kOe下降到3.7 kOe,嚴重被膜層中的軟磁相鐵氧化物所破壞。
We investigated the third compound added in FePt layer in order to achieve good grain segregation and grain size uniform granular films. Can be divide into two parts. In the first part, Multilayers [FePt (2.5 nm)/B4C (t nm)]4 (t=0-1) and [FePt (2.5 nm)/(B4C)0.7Ag0.3 (0.25 nm)]4 were alternately deposited on a glass substrate and subsequently annealed by a rapid thermal process (RTP) at 800oC for 3 min. After RTP, the granular FePt(B4C) and FePt(B4C-Ag) films with perpendicular magnetization were formed. The immiscible (B4C, Ag) elements were used as segregant to isolate FePt grains and maintain c-axis alignment. The B4C is an extremely covalent hard ceramic material with high melting point and used to separate FePt grains and avoid the formation of soft FeB during annealing. The minor doped Ag with high mobility was used to promote the ordering. The FePt grains were separated uniformly and the average grains size was 14.7 nm in (Fe0.48Pt0.52)90 [(B4C)0.7Ag0.3)]10 film. Another series, Multilayers [FePt/B4C (t nm)]10 (t = 0-0.4) and [FePt/(B4C)yAg1-y (0.1nm)]10 (y = 0.2-0.8) films were deposited on a glass substrate and subsequently annealed by a rapid thermal process (RTP) at 800oC for 3 min. After RTP, the granular FePt(B4C) and FePt(B4C-Ag) films with perpendicular magnetization were formed. The FePt grains were interconnected in FePt(B4C) films and further broken into the small round grains in FePt(B4C-Ag) films. In FePt(B4C) films, the maze-like structure with worm shape FePt grains but the grains boundaries were still defined. The granular structure with well defined boundaries was formed when the minor Ag was added to partial replace B4C. The average grains size of FePt was 10. 6 nm in (FePt)90 [(B4C)0.2Ag0.8)]10 film. In second part, multilayers of [FePt(1 nm)/B(0.1 nm)]10 and [FePt (1nm) / (B0.7Ag0.3)(0.1nm)]10 were alternately deposited on a glass substrate and subsequently annealed using a rapid thermal process (RTP) at 800oC for 3 min. Plasma oxidation process was performed on sputtered B or (B, Ag) layer. Thereafter, granular FePt(B, Ag) films with perpendicular magnetization were formed. The immiscible (B, Ag) elements were used as a segregant to isolate FePt grains and maintain c-axis alignment. After plasma oxidation and posting annealing, the iron-oxide and boron-oxide were indexed in granular FePt(B, Ag) films. When the oxygen flow ratio within 1%, the FePt(B, Ag) film show maze like structure and the FePt grains was increased slightly from 8.1 nm to 10.1 nm after plasma oxidation. The oxygen may create vacancies that improve the atomic diffusion during ordering and enhance the grain growth. When the oxygen flow ratio is above 3%, the FePt grains size was furthered reduced to around 4~5 nm due to the boron oxide but the perpendicular magnetization and coercivity of Fe(B, Ag) film was deteriorated due to lots of soft magnetic iron-oxide.
URI: http://hdl.handle.net/11455/11284
其他識別: U0005-0807201316100500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0807201316100500
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.