Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11286
DC FieldValueLanguage
dc.contributor蔡佳霖zh_TW
dc.contributorJai-Lin Tsaien_US
dc.contributor.author黃健強zh_TW
dc.contributor.authorHuang, Jian-Chiangen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:47:22Z-
dc.date.available2014-06-06T06:47:22Z-
dc.identifierU0005-2706201214093600en_US
dc.identifier.citation[1] Roger Wood , J. Magn. Magn. Mater., vol. 321, No. 6. 555–561(2009) [2] 許仁華、孫安正,奈米儲存發展與前景,物理雙月刊(三十卷二期) 2008年四月,p.152-159 [3] M. Bainich, J. Proto, A. Fert, F. Nguyen Van Dau, F. Petroff, Phys. Rev. let, 61, 2472 (1988). [4] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Best, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., Vol.36, 10 (2000). [5] WD Caviar Green 3TB , http://www.wdc.com/en/products/products.aspx?id=120 [6] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, and N. Yoshikawa, IEEE Trans. Magn., Vol. 45, 10 ( 2009) [7] Jai-Lin Tsai, Hsin-Te Tzeng, and Guo-Bin Lin J. Appl. Phys. 107, 09A713 (2010) [8] Jai-Lin Tsai, Hsueh-Wei Tai, and Hsin-Te Tzeng J. Appl. Phys. 109, 07A713 (2011) [9] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 2, American Society For Metals, second printing (1987). [10] JCPDS card, Card No. 29-0718. [11] M. A. I. Nahid and T. Suzuki, Appl. Phys. Lett.,85, 4100 (2004). [12] 蕭世男,初始應力/應變態對鐵鉑薄膜其序化轉變與動力學之影響,逢甲大學博士論文,中華民國一百年三月。 [13] JCPDS card, Card No. 65-1051 [14] 許樹恩,吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會,第十三章,1996年。 [15] Hari Singh Nalwa, Stevenson Ranch, Calif, “Magnetic Nanostructure” (2002). [16] JCPDS card, Card No.03-0921 [17] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 1, American Society For Metals, second printing (1987). [18] S.-C. Chen , P.C. Kuo, A.C. Sun, C.T. Lie, W.C. Hsu, Materials Science and Engineering B88, 91 (2002). [19] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, and J. P. Wang, Appl. Phys. Lett., Vol.83, p.2196 (2003).. [20] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys. ,Vol. 92, 10 (2002). [21] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys. ,Vol.100, 056105 (2006). [22] JCPDS card, Card No.89-2777 [23] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 3, American Society For Metals, second printing (1987). [24] T. Aoyama, I. Sato, H. Ito, S. Ishio, Journal of Magnetism and Magnetic Materials 287 (2005) 209–213. [25] Y.M. Lee, B.S. Lee, C.G. Lee, B.H. Koo, Y. Shimada , Journal of Magnetism and Magnetic Materials 310 (2007) e918–e920 [26] Thaddeus B. Massalski, “Binary Alloy Phase Diagram”, vol 1, American Society For Metals, second printing (1987). [27] 陳士堃,”磁性技術手冊”,中華民國磁性技術協會,p.23-24,2002年。 [28] Soshin Chikazumi著, 張煦, 李學養合譯, 磁性物理學。 [29] B. D. Chllity, “Introduction to magnetic materials”, (Addison-Wesley, 1972), ch.7. [30] Nicola A. Spaldin, “Magnetic Materials Fundamentals and device applications”. [31] Edited by D. E. Gray, McGraw-Hill American Institute of Physics Handbook., 1972. [32] Maxwell, James Clerk, Atreatise on Electicity and Magnetism, Articles 437 and 438, Vol.2, 1006 (1954). [33] Stoner, Phil. Mag.7, 36, 803 (1945). [34] G. C. Hadjipanayais, J. Appl. Phys. , Vol. 63,965(1976). [35] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele and Mary F. Doerner, IEEE Trans. Magn. 36, 10 (2000). [36] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen, J. P. Wang, Appl. Phys. Lett. 83, 11 (2003). [37] Z.L. Zhao, J.S. Chen, J. Ding, K. Inaba, J.P. Wang, J. Magn. Magn. Mater. 282, 105 (2004). [38] Z.L. Zhao, J.S. Chen, J. Ding, K. Inaba, J.P. Wang, J. Magn. Magn. Mater. 282, 105 (2004). [39] Z. L. Zhao, J. Ding, Y. Ito, J. S. Chen, J. H. Zeng, J. P. Wang, J. Appl. Phys. 97, 10H502 (2005). [40] Z. L. Zhao, J. S. Chen, J. Ding, J. B. Yi, B. H. Liu, J. P. Wang, Appl. Phys. Lett. 88, 052503 (2006). [41] J. S. Chen, Y.Z. Zhou, C.J. Sun, S.W. Han, and G.M. Chow, APPLIED PHYSICS LETTERS 98, 131914 (2011) [42] C. Y. You, Y. K. Takahashi, and K. Hono, J. Appl. Phys. 100, 056105 (2006). [43] T. O. Seki, Y. K. Takahashi, K. Hono, J. Appl. Phys. 103, 023910 (2008). [44] Ning Li , Bruce M. Lairson IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 2, MARCH 1999 [45] T. Aoyama, I. Sato, H. Ito, S. Ishio, Journal of Magnetism and Magnetic Materials 287 (2005) 209–213. [46] Y.M. Lee, B.S. Lee, C.G. Lee, B.H. Koo, Y. Shimada , Journal of Magnetism and Magnetic Materials 310 (2007) e918–e920 [47] Neelam Kaushik , Parmanand Sharma , Hisamichi Kimura, Akihisa Inoue, Akihiro Makino JOURNAL OF APPLIED PHYSICS 103, 07E121 (2008) [48] Gyung-Min Choi , Byoung-Chul Min, Kyung-Ho Shin Applied Physics Express 4 (2011) 023001 [49] LI Yong-Le , HUANG An-Ping , FENG Tang-Fu CHIN. PHYS. LETT. Vol. 28, No. 6 (2011) 067502 [50] Y.L. Li ,T.F. Feng, Z.Y. Chen Applied Surface Science 257 (2011) 3666–3669 [51] B. Wang, K. Barmak, and T. J. Klemmer JOURNAL OF APPLIED PHYSICS 109, 07B739 (2011) [52] Y.M. Lee, B.S. Lee, C.G. Lee, B.H. Koo, Y. Shimada , Journal of Magnetism and Magnetic Materials 310 (2007) e918–e920 [53] Bao-He Li, Chun Feng, Xin Gao, Jiao Teng, and Guang-Hua Yu APPLIED PHYSICS LETTERS 91, 152502 (2007) [54] F. J. Yang, Hao Wang, H. B. Wang, X. Cao, and C. P. Yang JOURNAL OF APPLIED PHYSICS 102, 106101 (2007) [55] H. Wang , F.J.Yang , Q.Mo,J.Zhang,H.B.Wang,Y.Wang Journal of Magnetism and Magnetic Materials 321 (2009) 2627–2629 [56] T. Ichitsubo, S. Tojo, T. Uchihara, E. Matsubara PHYSICAL REVIEW B 77, 094114 (2008) [57] Li Zhang , Y.K. Takahashi, A. Perumal , K. Hono Journal of Magnetism and Magnetic Materials 322 (2010) 2658–2664 [58] Steven D. Granz, Katayun Barmak, and Mark H. Kryder, JOURNAL OF APPLIED PHYSICS 111, 07B709 (2012) [59] 田民波著,顏怡文校訂,薄膜技術與薄膜材料,五南圖書出版公司 第六章。 [60] 莊達人編著,VLSI製程技術,高立圖書有限公司 第五章。 [61] J. Venables, “Nucleation and Growth of Thin Films”, Rep. Prog. Phys. 47.399 (1984). [62] P. Moriarty, Rep. Prog. Phys. 64, 297 (2001). [63] 江政忠,”真空技術與應用”,國家實驗研究室儀器科技研究中心,第十三章,2001年 [64] 田民波,顏怡文,”薄膜技術與薄膜材料”,五南圖書,第十一章,2007年。 [65] 戴學暐,FePt-Ag2Se顆粒薄膜以及Fe/FePt-Ag2Se交換耦合膜之磁性與微結構研究,國立中興大學碩士論文,中華民國一百年七月。 [66] http://www.bruker-axs.com, Bruker AXS, “D8 DISCOVER - New Frontiers in the Nano-World” [67] Steven D.Granz n, MarkH.Kryder Journal of Magnetism and Magnetic Materials 324 (2012) 287–294 [68] En Yang, David E. Laughlin, and Jian-Gang Zhu , IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 1, JANUARY 2012 [69] Y. C. Wu, L. W. Wang, C. H. Lai, C. R. Chang, J. Appl. Phys. 103, 07E140 (2008). [70] A. Yu. Dobin, H. J. Richter, Appl. Phys. Lett. 89, 062512 (2006). [71] Tie-Jun Zhou,Boon Chow Lim, and Bo Liu, Appl. Phys. Lett. , Vol.94, 152505 (2009). [72] http://www.lakeshore.com, Lake Shore Cryotronics, Incorporation, “Vibrating Sample Magnetometers” [73] B. D. Cullity, C. D. Graham, “Introduction to Magnetic Materials”, second edition, p.68 (2009). [74] http://www.jeol.com ,JEOL Limited, “JEM-2100F Transmission Electron Microscope” [75] David B. Williams, C. Barry Carter, “Transmission Electron Microscopy”, second edition (2010)en_US
dc.identifier.urihttp://hdl.handle.net/11455/11286-
dc.description.abstract本實驗利用直流磁控濺鍍系統,以交錯沉積的方式在玻璃基板上製備出膜層結構為Ag(1.1nm)/[ B(t nm)/ FePt(0.95nm)]10(t = 0.05 – 0.6 nm)之多層膜,接著利用快速升溫製程(RTP)進行退火。經過熱處理後,FePt與B間會因互相擴散而形成(FePt)100-XBX之顆粒薄膜;在磁性質上B添加X=5、10時,具較優之垂直磁化強度。以及在微結構當B添加X=5、X=10時,相較於FePt/Ag雙層膜,FePt晶粒尺寸有明顯下降,由22nm下降至20nm、15nm,且分隔較好,顆粒較為均一。 接者選擇(FePt)100-XBX (X=5、10)之薄膜,分別為(FePt)90B10以及(FePt)95B5顆粒薄膜利用B與Ag共鍍,其BXAg1-X比例改變為(X=1-0)。經過熱處理後,形成(FePt)90(BXAg1-X)10以及(FePt)95(BXAg1-X)5顆粒薄膜。其中 (FePt)90(B0.7Ag0.3)10及(FePt)95(B0.9Ag0.1)5顆粒薄膜,相較於(FePt)100-XBX顆粒薄膜之FePt晶粒尺寸有明顯縮小至10.8nm、6.6nm,在磁性質上仍表現出垂直磁化特性。 最後再選擇(FePt)100-XBX (X=10)之薄膜,為(FePt)90B10顆粒薄膜利用B與Fe共鍍其BXFe1-X比例改變為(X=1-0),經過熱處理後,形成(FePt)90(BXFe1-X)10顆粒薄膜。從微結構上當Fe的比例增加,相較於(FePt)90B10顆粒薄膜其FePt硬磁晶粒開始有與FeB軟磁晶粒團聚之現象。zh_TW
dc.description.abstractMultilayers Ag/[B(t)/FePt(1nm)]10 (thickness t = 0.05-0.6 nm) were alternately deposited on a glass substrate and subsequently annealed by rapid thermal process (RTP) at 800 oC for 3 min. After RTP, the interface between FePt and B inter-diffusion to form granular films. The (FePt)100-XBX granular films when B content added 5%,10% showed perpendicular magnetization. Compared to Ag/FePt bilayer, the average grain size of the L10 FePt decreased from 22.2 nm to 20.1,15.1nm and uniformly separated when the B content added 5%、10%. Then selected (FePt)90B10 and (FePt)95B5 granular films codeposited with different fraction of Ag, the BXAg1-X proportion from X=0 to X=1 .After RTP, formed the (FePt)90(BXAg1-X)10 and (FePt)95(BXAg1-X)5 granular films. Compared with (FePt)100-XBX granular films, the average grain sizes of (FePt)90(B0.7Ag0.3)10 and (FePt)95(B0.9Ag0.11)5 decreased to 10.8nm,6.6nm. All granular films showed perpendicular magnetization. Finally, selected (FePt)90B10 granular films codeposited with different fraction of Fe, the BXFe1-X proportion from X=0 to X=1.After RTP, formed the (FePt)90(BXFe1-X)10 granular films. From microstructure, the fraction of Fe increased , the granular films were changed to interaction-grains-structure. The hard-soft magnetic FePt-FeB grains are interacted and formed the aggregated FePt-FeB grains.en_US
dc.description.tableofcontents致謝 i 摘要 ii ABSTRACT iii 目錄 iv 表目錄 vi 圖目錄 vii 符號說明 xii 第一章 簡介 - 1 - 1-1 前言 - 1 - 1-2 硬式磁碟機的簡介與發展 - 2 - 1-3 研究動機 - 5 - 第二章理論基礎與文獻回顧 - 7 - 2-1 材料之晶體結構 - 7 - 2-1-1 Fe-Pt合金結構 - 7 - 2-1-2 序化與非序化 - 9 - 2-1-3 序化相與熱力學反應之分類 - 11 - 2-1-4  Fe-Ag與Pt-Ag合金結構 - 13 - 2-1-5 Fe-B與Pt-B合金結構 - 14 - 2-1-6 Ag與B化合物結構 - 16 - 2-2  理論基礎 - 17 - 2-2-1 磁異向性(magnetic anisotropy) - 17 - 2-2-1-1 磁晶異向性 - 17 - 2-2-1-2 形狀異向性 - 21 - 2-2-2  超順磁效應 - 23 - 2-2-3 磁晶粒間交互作用力(δM) - 24 - 2-3 文獻回顧 - 26 - 2-3-1 第三元素Ag的添加 - 27 - 2-3-2 第三元素B的添加 - 30 - 2-3-3 B化合物添加以及B共鍍膜層 - 34 - 第三章 儀器原理與實驗流程 - 38 - 3-1 實驗流程 - 38 - 3-2 靶材選擇 - 39 - 3-3 基板之選用及清洗 - 39 - 3-4-1 薄膜沉積 - 41 - 3-4-2 薄膜沉積理論 - 43 - 3-4-3 熱處理 - 46 - 3-4-4 膜層結構 - 47 - 3-4 濺鍍理論 - 50 - 3-5 量測與分析 - 53 - 3-6-1 膜厚量測 - 53 - 3-6-2 晶體結構分析 - 54 - 3-6-3 序化度(S)與方位參數(LOF)計算 - 56 - 3-6-4 磁性量測 - 59 - 3-6-5 微結構分析 - 61 - 第四章 結果與討論 - 64 - 4-1 (FePt)100-XBX顆粒狀薄膜之探討 - 65 - 4-1-1 (FePt)100-XBX顆粒狀薄膜之X-ray繞射分析 - 65 - 4-1-2 (FePt)100-XBX顆粒狀薄膜之VSM磁性質分析 - 67 - 4-1-3(FePt)100-XBX顆粒狀薄膜之TEM微結構分析 - 69 - 4-2 (FePt)90 (BxAg1-x)10顆粒狀薄膜之探討 - 72 - 4-2-1 (FePt)90 (BxAg1-x)10顆粒狀薄膜之X-ray繞射分析- 72 - 4-2-2 (FePt)90 (BxAg1-x)10顆粒狀薄膜之VSM磁性質分析- 76 - 4-2-3 (FePt)90 (BxAg1-x)10顆粒狀薄膜之TEM微結構分析- 77 - 4-3 (FePt)95(BxAg1-x)5顆粒狀薄膜之探討 - 79 - 4-3-1 (FePt)95(BxAg1-x)5顆粒狀薄膜之X-ray繞射分析- 79 - 4-3-2 (FePt)95(BxAg1-x)5顆粒狀薄膜之VSM磁性質分析- 82 - 4-3-3 (FePt)95(BxAg1-x)5顆粒狀薄膜之TEM微結構分析- 83 - 4-4 (FePt)90 (BxFe1-x)10顆粒狀薄膜之探討 - 84 - 4-4-1 (FePt)90 (BxFe1-x)10顆粒狀薄膜之X-ray繞射分析- 85 - 4-4-2 (FePt)90 (BxFe1-x)10顆粒狀薄膜之VSM磁性質分析- 87 - 4-4-3 (FePt)90 (BxFe1-x)10顆粒狀薄膜之TEM微結構分析- 89 - 第五章 結論 - 91 - FePt-B 顆粒薄膜 - 91 - FePt-BAg 顆粒薄膜-I - 91 - FePt-BAg 顆粒薄膜-II- 91 - FePt-BFe顆粒薄膜 - 92 - 參考文獻 - 93 -zh_TW
dc.language.isozh_TWen_US
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706201214093600en_US
dc.subject鐵白金zh_TW
dc.subjectFePten_US
dc.subjectzh_TW
dc.subjectzh_TW
dc.subject顆粒薄膜zh_TW
dc.subjectAgen_US
dc.subjectBen_US
dc.subjectGranular filmsen_US
dc.titleFePt-(B-Ag)顆粒薄膜之磁性與微結構研究zh_TW
dc.titleMagnetic Properties and Microstructure of FePt(B-Ag) Granular Filmsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.