Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11291
標題: Gallol-PEG分散劑對水系奈米二氧化鈦懸浮體之分散、流變行為及粒間位能之影響研究
Effect of Gallol-PEG Surfactant on Dispersion, Rheology, and Interparticle Potential of Aqueous TiO2 Nanoparticles Suspension
作者: 沈賜君
Shen, Sz-Jiun
關鍵字: Gallol-PEG
Gallol-PEG
界面活性劑
分散劑
TiO2
流變
粒間位能
Surfactant
Dispersant
Rheology
Interparticle Potential
TiO2
出版社: 材料科學與工程學系所
引用: 參考文獻 1. D. Mardare, Materials Science and Engineering B, 95, 83 (2002). 2. D. A. Tryk, A. Fujishima, K. Honda, Electrochemica Acta, 45, 2363 (2000). 3. M. Gomez, J. Rodriguez, C. G. Granqvist, Thin Solid Films, 342,148 (1999). 4. O. M. Alfano, D. Bahnemannb, A. E. Cassano, Catalysis Today, 58, 199 (2000). 5. D. J. Shanefield, Organic Additives and Ceramic Processing, Kluwer Academic Publishers, Norwell, Massachusetts, 1995. 6. R. J. Pugh and L. Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing, Marcel Dekker, Inc., New York, 1994. 7. O. J. Rojas, P. M. Claesson, D. Muller and R. D. Neuman, “The effect of salt concentration on adsorption of low-charge-density polyelectrolytes and interactions between polyelectrolyte-coated surfaces” J. Colloid Interface Sci., 205 77-88 (1998). 8. A. R. Studart, E. Amstad and L. J. Gauckler, “Colloidal stabilization of nanoparticles in concentrated suspensions,” Langmuir, 23 1081-1090 (2007). 9. 葉昱廷,Gallol-PEG分散劑對水系奈米二氧化鈦膠體懸浮體之流變研究(2012)。 10. 林哲宇,Gallol PEG分散劑之吸附行為對奈米二氧化鈦粉體分散性質之研究(2013)。 11. Diebold, U. “The surface science of titanium dioxide.” Surface Science Reports. 48, 53-229 (2003). 12. 垰田博史著,張晶、楊健譯,光觸媒圖解(2003)。 13. “Anonymous In Phase Diagrams for Ceramists Figure” The American Ceramic Society, Inc. 76, 4150 (1975). 14. 馮怡蓁,含二氧化鈦中孔洞材料之製備、鑑定及催化應用(2007)。 15. Z. Baolong, C. Baishun, S. Keyu, H. Shangjin, L. Xiaodong, D. Zongjie, Y. Kelian,“Preparation and Characterization of Nanocrystal Grain TiO2 PorousMicrospheres”, Applied Catalysis B: Environmental, 40, 253–258, (2003). 16. X. Liu, J. Yang, L. Wang, X. Yang, L. Lu, X. Wang, “An Improvement on Sol-Gel Method for Preparing Ultrafine and Crystallized Titania Powder”, Mater. Sci. Eng., A 289, 241–245, (2000). 17. H. Mockel, M. Giersig, F. Willing, “Formation of Uniform Size Anatase Nanocrystals from bis(ammonium lactato)Titanium Dihydroxide by Thermohydrolysis” , J. Med. Chem., 9, 3051-3056, (1999). 18. Li. Wenbing, Z. Tingying, “Preparation of TiO2 Anatase Nanocrystals by TiCl4 Hydrolysis with Additive H2SO4”, PLoS ONE, 6, 002108, (2010). 19. 黃柏樺,二氧化鈦奈米粉體分散流變行為及溶膠凝膠粉體合成之究(2004)。 20. A. Zupancic, M. Zumer, R. Lapasin, G. Toeeiano, Progress in Coatings.30, 79–88(1997). 21. A. Zupancic, R. Lapasin, M. Zumer, Progress in Coatings. 30, 67–78 (1997). 22. X. Chen, H. Cheng, J. Ma, Powder Technol. 99, 171–176 (1998). 23. J. Edward Glass, Advances in Colloid and Interface Sci. 79, 123–148 (1999). 24. W. J. Tseng, K. C. Lin, Materials Sci. and Eng. A355, 186–192 (2003). 25. 林幸慧,以聚丙烯酸銨分散之次微米氧化鋁粉末的流變、注漿成形及燒結行為(2009)。 26. M. N. Rahaman, Ceramic processing, CRC Press, (2006). 27. R. J. Pugh and L. Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing, Marcel Dekker, Inc., New York, (1994). 28. J. A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc., 83,2341-2359 (2000). 29. H. C. Hamaker, “The London-van der Waals attraction between spherical particles,” Physica, 4, 1058-1072 (1937). 30. J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83 [10] 2341-2359 (2000). 31. D. H. Everett, Basic principles of colloid science, Royal Society of Chemistry, London, (1988). 32. J. S. Reed, Principles of Ceramic Processing 2nd ed., John Wiley & Sons, NY, (1995). 33. J. W. Goodwin, Colloids and Interfaces with Surface and Polymers: An Introduction, John Wiley & Sons Ltd, Chichester, (2004). 34. 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,五南圖書(2005)。 35. P. C. Hiemenz, Principles of colloid and surface chemistry, second edition, Marcel Dekker, New York, (1986). 36. A. Pettersson, G. Marino, A. Pursigeimo, and J. B. Rosengolm, “Electrosteric stabilization of Al2O3, ZrO2, and 3Y-ZrO2 suspensions: effect of dissociation and type of polyelectrolyte,” J. Colloid Interface Sci., 228, 73-81 (2000). 37. S. Jailani, G. V. Franks, and T. W. Healy, “ potential of nanoparticle suspensions: Effect of electrolyte concentration, particle size, and volume fraction,” J. Am. Ceram. Soc., 91 [4] 1141-1147 (2008). 38. M. J. Rosen, Surfactants and interfacial phenomena, second edition, Wiley, New York, (1988). 39. L. Bergstro‥m, “Hamaker Constants of Inorganic Materials,” Adv. Colloid Interface Sci., 70, 125–69 (1997). 40. 謝岳志,分散劑對氧化鋯漿料流變性質之影響(2006)。 41. B. Vincent, J. Edwards, S. Emmett, and A. Jones, “Depletion flocculation in dispersions of sterically-stabilised particles (soft spheres),” Colloids Surf., 18, 261-281 (1986). 42. J. Cesarano III, I. A. Aksay, and A. Bleier, “Stability of aqueous -Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte,” J. Am. Ceram. Soc., 71 [4] 250-255 (1988). 43. J. H. Jean and H. R. Wang, “Stabilization of aqueous BaTiO3 suspensions with ammonium salt of poly(acrylic acid) at various pH values,” J. Mater. Res., 13 [8] 2245–2250 (1998). 44. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal dispersions, Cambridge University Press, Cambridge, (1989). 45. D. R. Coronado, G. R. Gattorno, M. E. E.Pesqueira, C. Cab, R. D. Coss, G. Oskam , “Phase-Pure TiO2 Nanoparticles : Anatase, Brookite and Rutile”, Nanotechnology, 19, 145605, (2008). 46. 陳俊男,Gallol-PEG分散劑對水系奈米鎳懸浮體之流變行為(2010) 47. W. Y. Shih, W.-H. Shih and I. A. Aksay, “Elastic and yield behavior of strongly flocculated colloids,” J. Am. Ceram. Soc., 82 [3] 616-624 (1999). 48. W. J. Tseng and C. H. Wu, “Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions,” Acta Mater., 50 3757-3766 (2002). 49. R. Jullien and P. Meakin, “Simple Models for the restructuring of three-dimensional ballistic aggregates,” J. Colloid Interface Sci., 127 265-272 (1989). 50. W. J. Tseng, K. C. Lin, Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions, Materials Sci. and Eng. A355,186-192 (2003) 51. W. J. Tseng,S.-R. Wang,“Dispersion and Rheology of BaTiO3 Nanoparticles in Ethanol-Isopropanol Mixtures”,Journal of Electroceramics, 18 [3-4] 197-204(2007) 52. R. K. McGeary, “Mechanical packing of spherical particles,” J. Am. Ceram. Soc., 44 [10] 513-522 (1961). 53. D.-M. Liu, “Particle packing and rheological property of highly-concentrated ceramic suspensions:ϕm determination and viscosity prediction,” J. Mater. Sci., 35 5503-5507 (2000). 54. Jennifer A. Lewis,Colloidal Processing of Ceramics,J. Am. Ceram. Soc., 83 [10] 2341–59 (2000). 55. . J. N. Israelachvili, Intermolecular & Surface Forces, 2nd edition, Academic Press, London, (1991). 56. 林佳吟,以脂肪酸鈉鹽界劑製備水凝膠之行為研究探討(2009)。 57. M. J. Vold, “The effect of adsorption on the van der Waals interaction of spherical colloidal particles,” J. Colloid Sci., 16 1-12 (1961).
摘要: 摘要 本研究以自製的Gallol-PEG界面活性劑分子作為分散劑,進行對水系奈米二氧化鈦懸浮體之分散、流變行為及粒間位能之影響研究。Gallol-PEG界面活性劑是利用聚乙二醇甲基醚(Poly(ethylene glycol) methyl ether, PEG-Me750)與沒食子酸(Gallic acid) 進行酯化合成的分散劑,簡稱Gallol-PEG 750。藉由Zeta電位分析,確認Gallol-PEG750分子錨接吸附於奈米二氧化鈦粒子表面,吸附等溫線呈現多層吸附的行為。分散劑2wt.%濃度時,黏度量測曲線逐漸趨緩,推估此時Gallol-PEG分子吸附披附於二氧化鈦粒子表面趨於飽和,因此吾人將Gallol-PEG濃度設定在2wt.%為最佳濃度。隨著固含量(ϕ)的增加與較長的Gallol -PEG分子鏈比較容易產生尾鏈糾結、粒子間的架橋作用,粒子間易聚集形成綿密的結構導致降伏強度的增加,黏度呈現較高的情形。比較Gallol PEG350、550、750的碎形次元(Df)值分別為2.1、2.48、2.51,顯示懸浮體結構係屬於反應極限凝塊聚集RLCA(Reaction-limited cluster-cluster aggregation,RLCA),較長分子鏈的Gallol PEG效果略優於短鏈分子。當固含量17.5%時,Gallol-PEG 350、550、750由計算推估的有效體積分率ϕeff分別為33%、41%、51%,隨著有效體積分率的增加黏度和降伏強度也跟著提高。Gallol-PEG 750推估的有效體積分率ϕeff=0.51<ϕm=0.64之任意最密堆積結構之固含量,差異的原因可能與奈米二氧化鈦粉體容易凝聚,以小叢集為分散單元形成凝聚現象,進而形成碎形結構,降低懸浮體的最大固含量值所致。粒間位能的計算顯示,立體阻障排斥位能是主要的排斥力來源,超越靜電排斥的效果。 關鍵字: Gallol-PEG、界面活性劑、分散劑、TiO2、流變、粒間位能
Abstract A polymeric surfactant, hereafter termed Gallol-PEG, was synthesized and used as the dispersing agent in order to examine the dispersion and rheological behavior of titanium dioxide (TiO2) nanoparticles in water. The Gallol-PEG polymer was prepared from esterification reaction utilizing reagent-grade gallic acid (molecular weight Mw = 188.13 g‧mole-1) and poly(ethylene glycol) monomethyl ether (PEG-Me) at 130 °C in dry nitrogen atmosphere. The PEG-Me used had an averaged molecular weight of 750 g‧mole-1, and is hence also called Gallol-PEG 750. Preferential adsorption of the Gallol-PEG 750 molecules on the TiO2 particle surface was verified by zeta potential, particle-size distribution, and adsorption isotherm. The adsorption appeared to involve multiple layers. The suspension viscosity reached a low value when the surfactant concentration was at 2wt%, at which the Gallol-PEG molecules were considered to have covered all the surface available on the TiO2 particles. An optimal surfactant concentration was hence determined to be 2wt% of the solids. When compared to the surfactant prepared from PEG-ME of different molecular weights, tail chain engagement and particle bridging are more likely to occur as solids loading and tail length of the Gallol-PEG molecule are increased. The particles that gathered into denser flocs increased yield stress and led to a higher viscosity. Fractal dimension (Df) of Gallol PEG350, 550 and 750 was 2.1, 2.48 and 2.51, respectively. The suspension structure was hence of a reaction-limited cluster-cluster aggregation (RLCA), regardless of the different molecular weights used. With solids loading being 17.5%, the effective volume fractions (ϕeff) of Gallol-PEG 350, 550 and 750 were calculated to be 33%, 41% and 51%, respectively. When the solids loading increased, the yield stress and viscosity increased accordingly. The effective volume fraction (ϕeff) of Gallol-PEG was estimated to be 0.51, and the solid volume of which was less than that of the random close-packing construction with ϕm= 0.64. Theoretical calculation of potential energy between particles showed that steric hindrance provided the primarily interparticle repulsion, prevailing the Coulomb repulsion, when the Gallol-PEG polymer was used. Keywords: Gallol-PEG, Surfactant, Dispersant, Rheology, Interparticle Potential, TiO2
URI: http://hdl.handle.net/11455/11291
其他識別: U0005-2908201301584900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908201301584900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.