Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11294
標題: Gallol-PEG分散劑對水系奈米二氧化鈦膠體之流變研究
Effect of Gallol-PEG Surfactant on Rheological Behavior of Aqueous TiO2 Nanoparticle Suspensions
作者: 葉昱廷
Yeh, Yu-Ting
關鍵字: 二氧化鈦
TiO2 nanoparticle
銳鈦礦
流變
分散
界面活性劑
黏度
Anatase
Rheology
Surfactant
Gallol-PEG
Viscosity
出版社: 材料科學與工程學系所
引用: 1. A. L. Linsebigler, G. Lu, J. T. Yates, “ Photocatalysis on TiO2 Surfaces Principles, Mechanisms, and Selected Results” , Chem. Rev., 95, 735-758 (1995). 2. D. M. Bloor, E. W. Jones, The Structure, Dynamics and Equilibrium Properties of Colloidal Systems , Kluwer Academic Pub., Dordrecht, 1990. 3. R. J. Pugh, L. Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing, Marcel Dekker Inc., New York, 1994. 4. D. R. Coronado, G. R. Gattorno, M. E. E.Pesqueira, C. Cab, R. D. Coss, G. Oskam , “Phase-Pure TiO2 Nanoparticles : Anatase, Brookite and Rutile”, Nanotechnology, 19, 145605 (2008). 5. S. J. Xin, X Hui, Z. Y. Jun, C. J. Mei, “Dispersion and Surface Modification of Nanometer TiO2”, Text. Aux., 24 , 5-9 (2007). 6. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powder”, Am. Ceram. Soc. Bull. , 67, 1673-1678 (1988). 7. Li. Wenbing, Z. Tingying, “Preparation of TiO2 Anatase Nanocrystals by TiCl4 Hydrolysis with Additive H2SO4”, PLoS ONE, 6, 002108 (2010). 8. Z. Baolong, C. Baishun, S. Keyu, H. Shangjin, L. Xiaodong, D. Zongjie, Y. Kelian, “Preparation and Characterization of Nanocrystal Grain TiO2 PorousMicrospheres”, Applied Catalysis B: Environmental, 40, 253-258 (2003). 9. X. Liu, J. Yang, L. Wang, X. Yang, L. Lu, X. Wang, “An Improvement on Sol-Gel Method for Preparing Ultrafine and Crystallized Titania Powder”, Mater. Sci. Eng., A 289, 241–245 (2000). 10. H. Mockel, M. Giersig, F. Willing, “Formation of Uniform Size Anatase Nanocrystals from bis(ammonium lactato)Titanium Dihydroxide by Thermohydrolysis” , J. Med. Chem., 9, 3051-3056 (1999). 11. J. W. Goodwin, Colloids and Interfaces with Surface and Polymers: An Introduction, John Wiley & Sons Ltd, Chichester, 2004. 12. J. S. Reed, Principles of Ceramics Processing, 2nd edition, John Wiley & Sons, Inc., New York, 1995. 13. X. Chen, H. Cheng, J. Ma, “A Study on the Stability and Rheological Behavior of Concentrated TiO2 Dispersions”, Powder Technol, 99, 171-176 (1998). 14. J. E. Glass, “Adsorption of Hydrophobically-Modified, Ethoxylated Urethane Thickeners on Latex and Titanium Dioxide Disperse Phases”, Adv. Colloid Interface Sci., 79, 123–148 (1999). 15. W. J. Tseng, K. C. Lin, “Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions”, Mater. Sci. Eng., A 355, 186–192 (2003). 16. LI. G. Long, W. Kan, T. J. Ming, “Research on Dispersion of Nano TiO2 in Aqueous Coating System”, Mod. Paint. Finish., 9, 31-38 (2006). 17. M. J. Vold, “The Effect of Adsorption on The Van Der Waals Interaction of Spherical Colloidal Particles”, J. Colloid Sci., 16, 1-12 (1961). 18. 陳俊男 , Gallol-PEG分散劑對水系奈米鎳懸浮體之流變行為 (2010) 19. D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th edition, Butterworth-Heinemann Ltd, Oxford, 1992. 20. 李潔如, 牟中原, ”微胞、微乳液的形成”, 科學月刊全文資料庫, 0298, (1994). 21. A. R. Studart, E. Amstad, L. J. Gauckler, “Colloidal Stabilization ofNanoparticles in Concentrated Suspensions”, Langmuir, 23, 1081-1090 (2007). 22. 黃柏樺 ,二氧化鈦奈米粉體分散流變行為及溶膠凝膠粉體合成之研究 (2004) 23. D. M. Liu, “Particle Packing and Rheological Property of Highly Concentrated Ceramic Suspensions: Determination and Viscosity Prediction”, J. Mater. Sci., 35, 5503-5507 (2000). 24. S. Tang, J. M. Preece, C. M. McFarlane , Z. Zhang, “Fractal Morphology and Breakage of DLCA and RLCA Aggregates”, J. Colloid Interface Sci., 221, 114-123 (2000). 25. T. Kitano, T. Kataoka, T. Shirota, “An Empirical Equation of The Relative Viscosity of Polymer Melts Filled With Various Inorganic Fillers”, Rheol. Acta., 20, 207–209 (1981). 26. N. Casson, "Rheology of Disperse Systems", (C. C. Mill, editor), Pergamon, London, 1959. 27. O. Xiujuan, D. Haiyan, ”Study on the Dispersivity of TiO2 Nano Powder”, J. Chin. Ceram. Soc., 25, 74-77 (2006). 28. K. D. Ziegel, “Role of The Interface in Mechanical Energy Dissipation of Composites.”, J. Colloid Interface Sci., 29, 72-80 (1969). 29. P. C. Hiemenz , R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd edition, Marcel Dekker, Inc., New York, 1997. 30. O. J. Rojas, P. M. Claesson, D. Muller, R. D. Neuman, ”The Effect of Salt Concentration on Adsorption of Low-Charge-Density Polyelectrolytes and Interactions Between Polyelectrolyte-coated Surfaces”, J. Colloid Interface Sci., 205, 77-88 (1998).
摘要: 本研究探討奈米尺寸之二氧化鈦粉體添加於去離子水中之分散及流變行為。吾人使用自製的pyrogallol-poly(ethylene glycol),簡稱Gallol-PEG 350界面活性劑,做為分散劑,探討Gallol-PEG分子的吸附對奈米二氧化鈦粉體在純水中之分散與懸浮體之微結構變化。前述Gallol-PEG界面活性劑是以沒食子酸(Gallic acid)與聚乙二醇甲基醚(PEG-Me 350)進行酯化合成,藉由吸附等溫實驗顯示其分子在二氧化鈦粒子表面的吸附並非呈現典型的Langmuir 單層型態的吸附,而是在超過 1wt% 之後,由單層變化成多層吸附;由Zeta 電位分析,吾人確認Gallol-PEG 分子的極性頭端會錨接吸附在二氧化鈦粒子表面,由黏度測試決定Gallol-PEG的最佳濃度約在2 wt%,超過此濃度,Gallol-PEG容易因微胞(Micelle)產生而在膠體中生成許多氣泡;此外膠體黏度隨固含量增加而明顯變稠,吾人利用Herschel-Bulkley模式計算懸浮體的降伏強度,並預測碎形次元(Df)約為2.1,顯示此奈米懸浮液的微結構應是屬於反應極限凝塊聚集機制(RLCA)。
URI: http://hdl.handle.net/11455/11294
其他識別: U0005-2008201213023700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201213023700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.