Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11296
標題: N型BaGaSn熱電材料之製程開發與特性分析
The Process Development and Characterization of N-type BaGaSn Thermoelectric Material
作者: 劉至堯
Liu, Jhih-Yao
關鍵字: BaGaSn
BaGaSn
熱電材料
助熔劑法
粉末冶金
ZT值
thermoelectric materials
flux method
powder metallurgy
ZT value
出版社: 材料科學與工程學系所
引用: 參考文獻 1. S. Jacobsson and A. Johnson, “The diffusion of renewable energy technology: an analytical framework and key issues for research,” Energy Policy 28 (2000) 625. 2. T. J. Seebeck, “Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin (1823) 265-373. 3. J. C. Peltier, “Nouvelles expériences sur la caloricité des courans électrique,” Annales de Chimie et de Physique 56 (1834) 371. 4. A. F. Ioffe, S. V. Airapetyants, A. V. Ioffe, N. V. Kolomoets and L. S. Stilbans, “On increasing the efficiency of semiconducting thermocouples,” Doklady Akademii Nauk SSSR 106 (1956) 931. 5. H. J. Goldsmid and R. W. Douglas, “The use of semiconductors in termoelectric refrigeration,” British Journal of Applied Physics 5 (1954) 386. 6. C.A. Gould, N.Y.A. Shammas, S. Grainger, I. Taylor, “A comprehensive review of thermoelectric technology, micro-electrical and power generation properties,” Proceedings of the 26th Inernational Conference on Microelectronics (2008). 7. M. A. Karri, E. F. Thacher, B. T. Helenbrook and M. S. Compeau, “Thermoelectrical energy recovery from the exhaust of a light truck,” Diesel Engine Emissions Reduction Conference (2003) pp. 9. 8. 朱旭山,「熱電材料與元件之發展應用」,工業材料雜誌,第220 期(2005),93。 9. W. Jan, J. W. Vandersande and J. P. Fleurial, “Thermal management of power electronics using thermoelectric coolers,” 15th Internatioal Conference on Thermoelectrics Pasadena (1996) 252. 10. D. M. Rowe, “CRC Handbook of Thermoelectrics Chapter 1 and 10,” CRC Press Boca Raron London New York Washington (1995). 11. G. S. Nolas, G. A. Slack, J. L. Cohn and S. B. Schujman, “The next generation of thermoelectric materials,” Proceedings of the 17th International Conference on Thermoelectrics (1998) 294. 12. 朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,(2004),78。 13. W. Thomson, “Account of researches in thermo-electricity,” Philosophical Magazine 8 (1854) 62. 14. W. Thomson, “On the electrodynamic qualities of metals,” Philosophical Transactions of the Royal Society of London 146 (1856) 649. 15. E. Altenkirch, “Über den Nutzeffekt der Thermosäule,” Physikalische Zeitschrift 10 (1909) 560. 16. E. Altenkirch, “Elektrothermische Kalteerzeugung und reversible elektrische Heizung,” Physikalische Zeitschrift 12 (1911) 920. 17. L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Physical Review B 47 (1993) 16631. 18. N. Scoville, C. Bajgar, J. P. Fleurial and J. Vaderasnde, “Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles,” Nanostructured Materials 5 (1995) 207. 19. R. E. Hummel, “Electronic Properties of Materials 3rd edition,” Springer, New York, (2001) pp. 80-82. 20. G. S. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Materials 7 (2008) 105-107. 21. 劉恩科、朱秉升,羅晉生編著,嚴考豐編修,「半導體物理學(第六版)」,新文京開發出版股份有限公司,2006年5月,第470~471頁。 22. C. M. Bhandari and D. M. Rowe, “Thermal Conduction in Semiconductors,” Wiley Eastern Limited, New Delhi, (1998) pp. 59. 23. R. Franz and G. Wiedemann, “Über die Wärme-Leitungsfähigkeit der Metalle,” Annalen der Physik 165 (1853) 497–531. 24. D. M. Rowe and G. Min, “Alpha-plot in sigma-plot as a thermoelectric-material performance indicator,” Journal of Material Science Letters 14 (1995) 617-619. 25. T. Caillat, J. P. Fleurial and A. Borshchevsky, “Preparation and thermoelectric properties of semiconducting Zn4Sb3,” Journal of Physics and Chemistry of Solids 58 (1997) 1119-1125. 26. G. Nakamoto, K. Kinoshita and M. Kurisu, “Thermal expansion anomalies at high temperatures near stoichiometric Zn4Sb3 composition,” Journal of Alloys and Compounds 436 (2007) 65. 27. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis and M.G. Kanatzidis, “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit,” Science 303 (2004) 818. 28. W. Zhang, L. Chen and X. Li, “High temperature thermoelectric properties of AgPb18+xSbTe20,” Key Engineering Materials 857 (2007) 336-338. 29. D. Huo, T. Sakata, M.A. Avila, M. Tsubota, F. Iga, H. Fukuoka, S. Yamanaka, S. Aoyagi and T. Takabatake, “Structural, transport, and thermal properties of the single crystalline type-VIII clathrate Ba8Ga16Sn30,” Physical Review B 71 (2005) 075113. 30. Y. Saiga, K. Suekuni, S.K. Deng, T. Yamamoto, Y. Kono, N. Ohya and T. Takabatake, “Optimization of thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 by carrier tuning,” Journal of Alloys and Compounds 507 (2010) 1–5. 31. C. Mogens, J. Fanni and B. B. Iversen, “The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering,” Physica B 505 (2006) 385-386. 32. C. Gatti, L. Bertini, N. P. Blake and B. B. Iversen, “Guest ± framework interaction in type I inorganic clathrates with promising thermoelectric properties: on the ionic versus neutral nature of the alkaline-earth metal guest A in A8Ga16Ge30 (A = Sr, Ba),” Chemistry - A Euopean Journal 9 (2003) 4556 – 4568. 33. D. M. Rowe, “CRC Handbook of Thermoelectrics: Macro to Nnano Chapter 32,” CRC, Boca Raron, (2005) pp. 32-6. 34. H.G. von Schnering, W. Carrillo-Cabrera, R. Kröner, E.-M. Peters and K. Peters, “Crystal structure of the clathrate β-Ba8Ga16Sn30,” Zeitschrift für Kristallographie – New Crytal Structures 213 (1998) 679. 35. B. Eisenmann, H. Schäfer and A. Weiss, “Die Verbindungen A8IIB16IIIB30IV (AII = Sr, Ba; BIII = Al, Ga; BIV = Si, Ge, Sn) und ihre Käfigstrukturen,” Journal of Less-Common Metals 118 (1986) 43. 36. M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka and T. Takabatake, “Glass versus crystalline therrmal conductivity in carrier-tuned Ba8Ga16X30 clathrates (X = Ge, Sn),” Physical Review B 74 (2006) 125109. 37. K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa and T. Takabatake, “Simultaneous structure and carrier tuning of dimorphic clathrate Ba8Ga16Sn30,” Physical Review B 77 (2008) 235119. 38. M.A. Avila, D. Huo, T. Sakata, K. Suekuni and T. Takabatake, “Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30,” Journal of Physics:Condensed Matter 18 (2006) 1585-1592. 39. S. Deng, Y. Saiga, K. Suekuni and T. Takabatake “Enhancement of thermoelectric efficiency in type-VIII clathrate Ba8Ga16Sn30 by Al substitution for Ga,” Journal of Applied Physics 108 (2010) 073705. 40. S. Deng, Y. Saiga, K. Kajisa and T. Takabatake, “High thermoelectric performance of Cu substituted type-VIII clathrate Ba8Ga16–xCuxSn30 single crystals,” Journal of Applied Physics 109 (2011) 103704. 41. B. Du, Y. Saiga, K. Kajisa and T. Takabatake, “Thermoelectric performance of Zn-substituted type-VIII clathrate Ba8Ga16Sn30 single crystals,” Journal of Applied Physics 111 (2012) 013707. 42. Z. Fisk and J. P. Remeika, “Handbook on the Physics and Chemistry of Rare Earths Volume 12 Chapter 81,” Elsevier, Amsterdam, (1989) pp. 53-70. 43. M. G. Kanatzidis, R. Pöttgen and W. Jeitschko, “The metal flux: a preparative tool for the exploration of intermetallic compounds,” Angewandte Chemie Internatioal Edition 44 (2005) 6996-7023. 44. M. Hansen and K. Anderko, “Constitution of Binary Alloys,” McGraw-Hill, New York, (1958). 45. R.M. German,“Powder Metallurgy Science,”Metal Powder Industries Federation, (1994). 46. R.M. German,“Sintering Theory and Practice,”John Wiley&Sons Inc. (1996) pp. 231-245. 47. Suk-Joong L. Kang, “Sintering: Densification, Grain Growth and Microstructure,” Elsevier, Oxford UK, (2005) pp. 42. 48. S. Yangyun and R. J. Brook, “Mechanism of reactive sintering of aluminum nitride,” Science of Sintering 17(1) (1985) 35 – 47. 49. 汪建民,「材料分析」,中國材料科學學會,(1998),第156頁。 50. M. J. O’Neill, “Measurement of specific heat funtions by differential scanning calorimetry,” Analytical Chemistry 38 (1996) 1330. 51. K. Kishimoto and T. Koyanagi, “Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties,” Journal of Applied Physics 92 (2002) 2544. 52. V. Jovovic and J. P. Heremans, “Measurements of the energy band gap and valence band structure of AgSbTe2,” Physical Review B 77 (2008) 245204. 53. T. M. Tritt, “Thermal Conductivity: Theory, Properties and Applications,” Springer, New York, (2004) pp. 8.
摘要: 本研究分別利用助熔劑法及粉末冶金法製備N型BaGaSn化合物,並探討成分配比、燒結時間及燒結溫度對BaGaSn化合物熱電特性之影響。 EDS分析之結果顯示,以助熔劑法製備之樣本有多核成長的現象,且作為助熔劑的Sn並未與樣本完全分離。由X光繞射分析的結果可知,BaGaSn在450℃以上會分解,這顯示其為不一致熔融之化合物。在不同成分配比之樣本中,隨著Sn添加量的上升,Sn的繞射峰強度也逐漸上升,而BaGaSn之強度則有些微下降。在空氣中反覆加熱會使BaGaSn與氧反應而生成BaGa12O19及Ba2SnO4。 根據熱電量測之結果,燒結時間的增加會使孔隙率減少並提升電導率,但Seebeck係數卻會因為晶界面積的減少而下降。而過量Sn的添加雖可提升電導率,但也連帶使Seebeck係數降低。熱導率的量測結果顯示,隨著溫度的上升熱導率會持續下降,在300℃則會再次上升。 在空氣中重覆加熱過後,由於添加在樣本中的過量Sn析出,使整體Seebeck係數大幅提高,而電導率則明顯下降。最佳的功率因子出現在250℃,初始成分配比為Ba:Ga:Sn=8:16:33之樣本,其值為0.25 mW/m•K2。從ZT值的計算結果中可知,ZT值的大幅增加可歸因於功率因子的提高及熱導率的下降,最佳值出現在250℃,其值為0.25。
URI: http://hdl.handle.net/11455/11296
其他識別: U0005-0308201211335400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0308201211335400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.