Please use this identifier to cite or link to this item:
標題: P型BaGaSn熱電材料之製程開發與特性分析
The Process Development and Characterization of p-type BaGaSn Thermoelectric Material
作者: 楊松暉
Yang, Song-Huei
關鍵字: 熱電材料
thermoelectric material
Ba8Ga16Sn30 clathrate compound
Seebeck coefficient
power factor
Ga-flux method
powder metallurgy.
出版社: 材料科學與工程學系所
引用: 第六章 參考文獻 1. S. Jacobsson and A. Johnson, “The diffusion of renewable energy technology: an analytical framework and key issues for research”, Energy Policy 28(2000) 625. 2. T.J. Seebeck, “Magnetic polarization of metals and minerals”, Abhandlungen der Deutschen Akademie der Wissneschaften zu Berlin(1823)265. 3. J.C. Peltier, “Nouvelles experience sur la caloricite des courans electrique”,Ann. Chim. Et Phys.56(1834)371. 4. H.J. Goldsmid and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5(1954)386. 5. C.E. Kelly, “The MHW converter (RTG)”,10thInt. Conf. on Energy Conversion Engineering (1975)880. 6. W. Jan, J.W. Vandersande and J.P. Fleurial, “Thermal mana- gemaent of power electronics using thermoelectric coolers”, 15thInt. Conf. on Thermo- electrics,Pasadena (1996)252. 7. 朱旭山,“熱電材料與元件之原理與應用”,工業材料雜誌,220(2005)93。 8. Terry M. Tritt, “Holey and Unholey Semiconductors”,Science: (1999)804. 9. D.M. Rowe, “CRC Handbook fo Thermoelectrics”,CRC Press Boca Raton London New York Washington(1995). 10. G.S. Nolas, G.A. Slack, J.L. Cohn and S.B. Schujman, “The next generation of thermoelectric materials,” Proceedings of the 17th International Conference on Thermoelectrics (1998)294. 11. V.I. Fistul, “Heavily Doped Semiconductors”, Plenum, New York(1969) . 12. D.M. Rowe and C.M. Bhandari, “Modern Thermoelectrics”, Holt Saunders,London(1983) . 13. L.D. Hicks and M.S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev.B (1993)47. 14. N. Scoville, C. Bajgar, J.P. Fleurial and J. Vaderasnde, “Thermal conductivity reduction in SiGe alloys by the addition of nano- phase particles”, NanoSturctured Materials 5(1995)207. 15. C.M. Bhandari and D.M. Rowe, “Thermal Conduction in Semiconductors”, Wiley Eastern Limited, New Delhi(1998)59 . 16. 熊聰,唐新峰,「I-型鍺基籠合物A8IIB16IIIB30IV的合成及熱電性能研究」,武漢理工大學材料所(2006)16. 17. J.P. Fleurial, A. Borshchevsky, T. Caillat and R. Ewell, “New materials and devices for thermoelectric applications”, Energy Conversion Engineering Conference(1997)1080. 18. C. Mogens, J. Fanni and B.B. Iverson, “The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering”, Physica. B 385-386(2006)505. 19. J. Baumert, C. Gutt, M. Krisch and H. Requardt, “Elastic pro- perties of methane hydrate at high pressures”, Phys. Rev. B 72(5) (2005)054302-1. 20. Y. Li, J. Gao, N. Chen, Y. Liu, Z.P. Luo, R.H. Zhang, X.Q. Ma, G.H. Cao, “Electronic structure and physical properties of Ba8Ga16Sn30 clathrates with type-I and type-VIII structure”, Physica B 403(2008)1140. 21. D.C. Li, L.Fang, S.K. Deng, K.Y. Kang, L.X. Shen, W.H. Wei, H.B. Ruan,“Structural and electronic properties of type-I and type-VIII Ba8Ga16Sn30 clathrates undercompression”, Physica B 407(2012)1238. 22. Yasushi Kono, Nobuyuki Ohya, Yuta Saiga, Kocihiro Suekuni, Toshiro Takabatake, Koji Akai, and Setsuo Yamanaka,“Carrier Doping in the Type VIII Clathrate Ba8Ga16Sn30 Through Sb Substitution”, Journal of ELECTRONIC MATERIALS. DOI: 10.1007/s11664-011-1590-4 (2011) TMS. 23. S.K. Deng, Y. Saiga, K. Suekuni, and T. Takabatake, “Effect of Al Substitution on the Thermoelectric Properties of the Type VIII Clathrate Ba8Ga16Sn30” ,Journal of ELECTRONIC MATERIALS DOI: 10.1007/s11664-011-1555-7 (2011) TMS. 24. R. Abbaschian, L. Abbaschian and R. E. Reed-hill, “Physical Metallurgy principles 4th Edition”, Cengage Learning,(2010)473. 25. 陳宏孟,“以熱壓法製備不同成分比例BaGaGe合金之熱電特性研究”,碩士論文, 國立中興大學材料科學與工程學系研究所,(2011)。 26. 徐仁輝,“粉末冶金概論”,新文京開發出版有限公司,(2002) 。 27. T. Caillat, J.P. Fleurial and A. Borshchevsky, “Preparation and thermoelectric properties of semiconducting Zn4Sb3”, J. Phys. Chem. Solids 58(1997)1119. 28. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis and M.G. Kanatzidis, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit,” Science 303(2004)818. 29. D. Huo, T. Sakata, T. Sasakawa, M.A. Avila, S. Yamanaka, F. Iga, H. Fukuoka,S. Aoyagi, M. Tsubota,and T. Takabatake ,“Structural, transport, and thermal properties of the single-crystalline type-VIII clathrate Ba8Ga16Sn30,” PHYSICAL REVIEW B 71 (2005)075113. 30. S. Deng, Y. Saiga, K. Suekuni, and T. Takabatake, “Enhancement of thermoelectric efficiency in type-VIII clathrate Ba8Ga16Sn30 by Al substitution for Ga,” JOURNAL OF APPLIED PHYSICS 108 (2010)073705. 31. Y. Saiga,K. Suekuni,S. Deng, T. Yamamoto, Y. Kono, N. Ohya,T. Takabatake, “Optimization of thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 by carrier tuning”, Journal of Alloys and Compounds 507 (2010)1. 32. B. Du, Y. Saiga, K. Kajisa, and T. Takabatake, “Thermoelectric performance of Zn-substituted type-VIII clathrate Ba8Ga16Sn30 single crystals”,J. Appl. Phys. 111(2012)013707. Doi: 10.1063/1.3673863 33. 汪建民,材料分析,中國材料科學學會,(1998) 34. E.S. Toberer, M. Christensen, B.B. Iverson and G.J. Snyder, “High temperature thermoelectric efficiency in Ba8Ga16Sn30”, Phys. Rev. B, 77(2008)075203.
摘要:   本實驗是分別以助熔劑法、溫度梯度法及粉末冶金法進行P型Ba8Ga16Sn30 Type -VIII晶籠化合物的製備,並探討在不同製程參數,如原始成份、溫度梯度、燒結溫度及燒結時間下材料組成、結構及熱電特性表現上的差異。藉由這些分析,以尋找出具有最好熱電表現的Ba8Ga16Sn30熱電材料的製程條件。   在實驗結果部分,以助熔劑法製備Ba8Ga16Sn30晶籠化合物,過程中會有多核成長的問題,以致於無法成功製備出單一Ba8Ga16Sn30晶體。而以溫度梯度法,雖可克服多核成長的影響而製備出成份穩定且尺寸較大的Ba8Ga16Sn30晶體,但樣本具有多相的樹枝狀結構,推測此結構應是組成過冷所造成的。最後在粉末冶金法中,分別嘗試在不同的燒結溫度、燒結時間與成分比例下製備Ba8Ga16Sn30晶籠化合物。在燒結溫度為450℃、燒結時間50小時、原始原子比例Ba:Ga:Sn=8:16:30時,順利製備Ba8Ga16Sn30晶籠化合物。其化合物成分比例相當接近目標的Ba8Ga16Sn30熱電材料。當環境溫度在350℃時,材料具有最佳Seebeck係數為53.4 V/K,此時電導率為507 S/cm,熱導率為0.22 W/mK,並藉由公式計算出最佳ZT值為0.27。
In this study, the methods of self-flux, temperature gradient, and powder metallurgy were used to prepare P-type Ba8Ga16Sn30 type-VIII clathrate compounds, and the influences of various process parameters like the raw composition, temperature gradient, sintering temperature and sintering time, on the sample composition, structure and the thermo- electric properties were investigated. From these investigations, one can obtain the process condition of the optimal thermoelectric performance of Ba8Ga16Sn30 thermoelectric material. According to the results, due to the multi-nucleation of Ba8Ga16Sn30 clathrate compounds in the Ga-flux, a whole crystal of Ba8Ga16Sn30 compounds can’t be successfully prepared by means of the self-flux method. Although the temperature gradient method can inhibit the phenomenon of multi-nucleation and a bigger Ba8Ga16Sn30 clathrate cry- stal with stable composition can be prepared, a dendritic structure with eutectic phase occurs. It is suggested that the structure is evolved by constitutional undercooling. Finally, by powder metallurgy method, Ba8Ga16Sn30 clathrate compounds were successfully prepared at the sintering temperature 450oC, sintering time 50 hours, and raw com- position Ba:Ga:Sn = 8:16:30. At 350oC the sample possesses the optimal Seebeck coeifficient 53.4 V/K, while the electrical conductivity is 507 S/cm, the thermal conductivity is 0.22 W/mK, and the optimal figure of merit is 0.27.
其他識別: U0005-1807201216584700
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.