Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11301
標題: SnO2/Graphene多階層奈米異質結構之合成及其氣體感測特性
Synthesis of SnO2/Graphene hierarchical nanostructure and their gas sensing properties
作者: 林政宇
Lin, Zheng-Yu
關鍵字: 石墨烯
Graphene
氣體感測
奈米線
Gas sensing
Nanowire
出版社: 材料科學與工程學系所
引用: 1. N. S. Baik, G. Sakai, N. Miura, N.Yamazoe, “Hydrothermally treated solution of tin oxide for thin-film gas sensor” Sensors and Actuators B, 63 (2000) 74 2. W. Y. Chung, G. Sakai, K. Shimanoe , N. Miura, D. D. Lee, N. Yamazoe, “Spin-coated indium oxide thin film on alumina and silicon substrates and their gas sensing properties” Sensors and Actuators B, 65 (2000) 312 3. J. F. Chang, H. H. Kuo, I. C. Leu, M. H. Hon, “The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor” Sensors and Actuators B, 84 (2002) 258 4. A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante, N. Yamazoe, “Cr-doped TiO2 gas sensor for exhaust NO2 monitoring” Sensors and Actuators B, 93 (2003) 509 5. C. Li, D. Zhang, X. Liu, S. Han, T. Tag, J. Han, C. W. Zhou, “In2O3 nanowires as chemical sensors”APPLIED PHYSICS LETTERS, 82 (2003) 10 6. Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, J. H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity” Nanotechnology , 19 (2008) 095508 7. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, J. G. Park , “On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity” Sensors and Actuators B, 138 (2009) 168 8. J. A. Park, J. Moon, S. J. Lee, S. H. Kim, T. Zyung, H. Y. Chu, “Structure and CO gas sensing properties of electrospun TiO2 nanofibers” Materials Letters, 64 (2010) 255 9. Il-Doo Kim , Avner Rothschild , Harry L. Tuller, “Advances and new directions in gas-sensing devices” Acta Materialia 61 (2013) 974 10. Il-Doo Kim , Avner Rothschild , Harry L. Tuller, “Advances and new directions in gas-sensing devices” Acta Materialia 61 (2013) 974 11. Liu, J.H.H., X.J.; Meng, F.L., The Dynamic Measurement of SnO2 Gas Sensor and Their Applications. In Science and Technology of Chemiresistor Gas Sensors, 2007: p. 177-214. 12. K. J. Choi, H. W. Jang, “One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues” Sensors, 10 (2010) 4083. 13. Sang Sub Kim, Jae Young Park, Sun-Woo Choi, Hyo Sung Kim, Han Gil Na, Ju Chan Yang and Hyoun Woo Kim, “Significant enhancement of the sensing characteristics of In2O3 nanowires by functionalization with Pt nanoparticles” Nanotechnology 21 (2010) 415502 14. Nandan Singh, Andrea Ponzoni, Raju Kumar Gupta, Pooi See Lee, Elisabetta Comini,” Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing”, Sensors and Actuators B 160 (2011) 1346 15. A. Heilig, N. Barsan, U. Weimar, W. Gopel, “Selectivity enhancement of SnO gas sensors: simultaneous monitoring of resistances and temperatures” Sensors and Actuators B, 58 (1999) 302 16. A. P. Lee, B. J. Reedy, “Temperature modulation in semiconductor gas sensing” Sensors and Actuators B, 60 (1999) 35 17. J. M. Lee, Ji-eun Park, Seri Kim, Sol Kim, Eunyoung Lee, Sung-Jin Kim, Wooyoung Lee,” Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxide nanostructures: Room temperature operating sensors” International journal of hydrogen energy 35 (2010) 12568 18. W. Zeng, T. Liu, Z. Wang, S. Tsukimoto, M. Saito, Y. Ikuhara, “Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor” Sensors, 9 (2009) 9029 19. SW Choi, A Katoch, J Zhang, SS Kim,” Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection”, Sensors and Actuators B 176 (2013) 585 20. J Liu, X Huang, G Ye, W Liu, Z Jiao, W Chao, Z Zhou, Z Yu, “H2S Detection Sensing Characteristic of CuO/SnO2 Sensor”, Sensors, 3( 2003) 110 21. D. Tsiulyanua, S. Marian, V. Miron, H. D. Liess, “High sensitive tellurium based NO2 gas sensor” Sensors and Actuators B, 73 (2001) 35 22. S. Sen, M. Sharmaa, V. Kumar, K. P. Muthea, P. V. Satyamb, U. M. Bhattab, M. Royd, N. K. Gaurc, S. K. Gupta, J. V. Yakhmia, “Chlorine gas sensors using one-dimensional tellurium nanostructures” Talanta, 77 (2009) 1567 23. T. Siciliano, E. Filippo, A. Genga, G. Micocci, M. Siciliano, A. Tepore, “Single-crystalline Te microtubes:Synthesis and NO2 gas sensor application” Sensors and Actuators B, 142 (2009) 185 24. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai1, “Nanotube Molecular Wires as Chemical Sensors” Science, 287 (2000) 622 25. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306 (2004) 666 26. Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim,”Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices”, Applied Physics Letters, 86 (2005) 073104-3 27. Y. Xu et al., J. Am. Chem. Soc., 130, 5856 (2008) 28. A new structural model for graphite oxide H. He et al., Chem. Phys. Lett., 287, 53 (1998) 29. Processable aqueous dispersions of graphene nanosheets D. Li et al., Nature Nanotech., 3, 101 (2008)。 30. W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, ”Epitaxial grapheme”, Solid State Communications, 143 (2007) 92 31. P. R. Somani, S. P. Somani and M. Umeno, Chem. Phys. Lett. 430, 56 (2006). 32. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, 93 (2008) 113103-3 33. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and Rodney S. Ruoff, Science 324, 1312 (2009). 34. S Bhaviripudi, X Jia, MS Dresselhaus, J Kong, “Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst”, Nano letters, 10 (2010) 4128 35. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nat. Mater. 6 (2007) 652 36. G Lu, LE Ocola, J Chen, ”Reduced graphene oxide for room-temperature gas sensors”, Nanotechnology, 20 (2009) 445502 37. RK Joshi, H Gomez, F Alvi, A Kumar,” Graphene Films and Ribbons for Sensing of O2, and 100 ppm of CO and NO2 in Practical Conditions”, J. Phys. Chem. C,114 (2010) 6610 38. R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A. Lloyd Spetz, R. Yakimova,” Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection”, Sensors and Actuators B, 115 (2011) 451 39. A Yang, X Tao, R Wang, S Lee, “Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers”, Applied Physics Letters , 91 (2007) 133100 40. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim,” Raman Spectrum of Graphene and Graphene Layers”, Phys. Rev. Lett. 97 (2006) 187401 41. J Zhang, PA Hu, X Wang, Z Wang, “Structural evolution and growth mechanism of graphene domains on copper foil by ambient pressure chemical vapor deposition”, Chemical Physics Letters, 536 (2012) 123 42. Yu, F., et al., “Fabrication of SnO2 one-dimensional nanosturctures with graded diameters by chemical vapor deposition method”, Journal of Crystal Growth, 312 (2010) 220 43. Gardner, J.W., “A diffusion-reaction model of electrical conduction in tin oxide gas sensors”, Semiconductor Science and Technology, 4 (1989) 345. 44. Thong, L.V., L.T.N. Loan, and N. Van Hieu, “Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures”, Sensors and Actuators B,150 ( 2010) 112 45. Zhenyu Zhang, Rujia Zou, Guosheng Song, Li Yu, Zhigang Chen, Junqing Hu,” Highly aligned SnO2 nanorods on graphene sheets for gas sensors”, J. Mater Chem., 21 (2011) 17360
摘要: 本實驗利用兩階段氣相傳輸法成功合成出SnO2/Graphene多階層奈米異質結構。我們探討了不同成長時間對於石墨烯成長的影響,也利用石墨烯在不同成長時間下的形貌變化探討其成長機制。實驗結果顯示,在1000˚C通入90:30的甲烷與氫氣混和氣體,隨著成長時間的增長,石墨烯的層數會隨之增加,而且成長機制和一般低壓化學氣相沉積(APCVD)有所不同,在這裡C-Cu合金顆粒在成長中扮演著提供碳源讓石墨烯成長的重要角色,甲烷在高溫分解為游離碳物種,此時會在石墨烯上成長出初始的石墨烯晶粒,而在石墨烯晶粒的周圍會因為碳物種的吸附而形成C-Cu合金,C-Cu合金提供了石墨烯足夠的碳源讓石墨烯繼續成長。石墨烯上成長SnO2奈米線是先在石墨烯上鍍金,利用金觸媒輔助的VLS的成長機制,合成出正方晶系(Tetragonal)金紅石(rutile)結構的SnO2奈米線,成長方向為[021]。在氣體感測方面,將石墨烯及SnO2/Graphene多階層奈米異質結構分別製成感測元件並在不同溫度不同濃度的NO2氣體進行感測特性量測。結果顯示,SnO2/Graphene多階層奈米異質結構比單純石墨烯擁有更高的靈敏度,這是因為此種多階層奈米異質結構擁有較大的比表面積,且SnO2奈米線和石墨烯接點產生蕭特基能障進而有利於捕捉電子,因此表現出較高的靈敏度。
In this study, SnO2/Graphene hierarchical nanostructures had been synthesized successfully by a two-step vapor transport method. We not only explore the effects of the different growth time on the resultant structures of graphene, but also observe the morphological evolution to investigate the growth mechanism. The results show that the number of the layers of graphene increased with increasing the growth time when a mixture of methane and nitrogen with a ratio of 90:30 was introduced and the growth temperature was kept at 1000˚C. Moreover, we found that the growth mechanism of grapheme grown on the copper foil in this study is different from that grown by the low pressure chemical vapor deposition (APCVD). Here the granules of C-Cu alloy play an essential role in the growth process of Graphene. When methane is disassociated into ionization species, small graphene grain will grow on the surface of copper foil in the initial stage. The absorption of carbon atoms around the graphene grains will lead to formation of C-Cu alloy that can provide sufficient carbon atom sources for the continuous growth of graphene. For the growth of SnO2 nanowires on the graphene substrate, a thin layer of gold was deposited on the graphene substrate and SnO2 nanowires were grown by an Au-catalytic VLS growth mechanism. The structure of SnO2 nanowires is confirmed to be tetragonal rutile and the growth direction is along [021]. For gas sensing measurements, sensors based on graphene and SnO2/Graphene hierarchical nanostructures are fabricated and their sensing properties to NO2 gas with various concentrations were measured at different operation temperatures. The results show that the SnO2/Graphene hierarchical nanostructures have higher sensitivities than graphene, which can be attributed to their high surface-to-volume ratios, and the formation of numerous Schottky barriers between SnO2 and Graphene that provides the advantage of catching electrons.
URI: http://hdl.handle.net/11455/11301
其他識別: U0005-0208201312365000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201312365000
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.