Please use this identifier to cite or link to this item:
標題: TeO2/SnO2多階層異質結構之合成及其室溫紫外光輔助氣體感測特性
Synthesis of TeO2/SnO2 hierarchical nanostructure and their UV-enhanced room temperature gas sensing properties
作者: 黃品富
Huang, Ping-Fu
關鍵字: 金屬半導體氧化物
Metal oxide semiconductor
hierarchical nanostructures
gas sensing
出版社: 材料科學與工程學系所
引用: [1]WHO Regional Office for Europe, C., WHO air quality guidelines for Europe. 2000. [2]Seiyama, T., et al., A New Detector for Gaseous Components Using Semiconductive Thin Films. Analytical Chemistry, 1962. 34(11): p. 1502-1503. [3]Sahner, K. and H.L. Tuller, Novel deposition techniques for metal oxide: Prospects for gas sensing. Journal of Electroceramics, 2008. 24(3): p. 177-199. [4]Mutinati, G.C., et al. Gas sensors based on silicon chip-to-chip synthesis of tin oxide nanowires. in Solid-State Device Research Conference (ESSDERC), 2011 Proceedings of the European. 2011. [5]Yang, Z., et al., Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sensors and Actuators B: Chemical, 2009. 140(2): p. 549-556. [6]Franke, M.E., T.J. Koplin, and U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small, 2006. 2(1): p. 36-50. [7]Liu, J.H.H., X.J.; Meng, F.L., The Dynamic Measurement of SnO2 Gas Sensor and Their Applications. In Science and Technology of Chemiresistor Gas Sensors, 2007: p. 177-214. [8]Ahn, M.W., et al., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied Physics Letters, 2008. 93(26): p. 263103. [9]Kim, I.-D., et al., Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Letters, 2006. 6(9): p. 2009-2013. [10]Williams, D.E.M., P. T., Dopant effects on the response of gas-sensitive resistors utilising semiconducting oxides. J. Mater. Chem., 1991, . 1(809.). [11]Kim, Y.-S., et al., CuO nanowire gas sensors for air quality control in automotive cabin. Sensors and Actuators B: Chemical, 2008. 135(1): p. 298-303. [12]Kim, W., et al., Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors. Nano Letters, 2003. 3(2): p. 193-198. [13]Hyodo, T., et al., Hydrogen sensing properties of SnO2 varistors loaded with SiO2 by surface chemical modification with diethoxydimethylsilane. Sensors and Actuators B: Chemical, 2000. 64(1–3): p. 175-181. [14]Lu, F., et al., Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4. Sensors and Actuators B: Chemical, 2000. 66(1–3): p. 225-227. [15]Du, H., et al., Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sensors and Actuators B: Chemical, 2012. [16]Singh, N., et al., Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sensors and Actuators B: Chemical, 2011. 160(1): p. 1346-1351. [17]Heilig, A., et al., Gas identification by modulating temperatures of SnO2-based thick film sensors. Sensors and Actuators B: Chemical, 1997. 43(1-3): p. 45-51. [18]Jansat, S., et al., Synthesis of New RuO2@SiO2 Composite Nanomaterials and their Application as Catalytic Filters for Selective Gas Detection. Advanced Functional Materials, 2007. 17(16): p. 3339-3347. [19]Kim, K.-W., et al., The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition. Sensors and Actuators B: Chemical, 2007. 123(1): p. 318-324. [20]De, G., et al., Nanocrystalline mesoporous palladium activated tin oxide thin films as room-temperature hydrogen gas sensors. Chem Commun (Camb), 2007(18): p. 1840-2. [21]Hwang, I.-S., et al., Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO. Sensors and Actuators B: Chemical, 2009. 142(1): p. 105-110. [22]Wu, J.M., A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. Nanotechnology, 2010. 21(23): p. 235501. [23]Sen, S., Room temperature operating ammonia sensor based on tellurium thin films. Sensors and Actuators B: Chemical, 2004. 98(2-3): p. 154-159. [24]Kind, H., et al., Nanowire Ultraviolet Photodetectors and Optical Switches. Advanced Materials, 2002. 14(2): p. 158-160. [25]Soci, C., et al., ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters, 2007. 7(4): p. 1003-1009. [26]Law, M., et al., Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature. Angewandte Chemie, 2002. 114(13): p. 2511-2514. [27]Li, Y., et al., High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology, 2009. 20(4): p. 045501. [28]Fan, S.-W., A.K. Srivastava, and V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters, 2009. 95(14): p. 142106. [29]Zhai, J., et al., Enhancement of Gas Sensing Properties of CdS Nanowire/ZnO Nanosphere Composite Materials at Room Temperature by Visible-Light Activation. ACS Applied Materials & Interfaces, 2011. 3(7): p. 2253-2258. [30]Prades, J.D., et al., Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sensors and Actuators B: Chemical, 2009. 140(2): p. 337-341. [31]Garnett, E.C. and P. Yang, Silicon Nanowire Radial p−n Junction Solar Cells. Journal of the American Chemical Society, 2008. 130(29): p. 9224-9225. [32]Nizamoglu, S., et al., White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology, 2007. 18(6): p. 065709. [33]Gautam, U.K., et al., Synthesis, Structure, and Multiply Enhanced Field-Emission Properties of Branched ZnS Nanotube−In Nanowire Core−Shell Heterostructures. ACS Nano, 2008. 2(5): p. 1015-1021. [34]Pena, D.J., et al., Template Growth of Photoconductive Metal−CdSe−Metal Nanowires. The Journal of Physical Chemistry B, 2002. 106(30): p. 7458-7462. [35]Wei, Q., et al., Giant capacitance effect and physical model of nano crystalline CuO--BaTiO[sub 3] semiconductor as a CO[sub 2] gas sensor. Journal of Applied Physics, 2000. 88(8): p. 4818-4824. [36]Kang, J., et al., Fabrication of the SnO2/α-Fe2O3Hierarchical Heterostructure and Its Enhanced Photocatalytic Property. The Journal of Physical Chemistry C, 2011. 115(16): p. 7874-7879. [37]Wan, Q., et al., High-Performance Transparent Conducting Oxide Nanowires. Nano Letters, 2006. 6(12): p. 2909-2915. [38]Cheng, C., et al., Hierarchical Assembly of ZnO Nanostructures on SnO2 Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties. ACS Nano, 2009. 3(10): p. 3069-3076. [39]Vomiero, A., et al., Preparation of Radial and Longitudinal Nanosized Heterostructures of In2O3 and SnO2. Nano Letters, 2007. 7(12): p. 3553-3558. [40]Meng, G., et al., Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template. Journal of Applied Physics, 2005. 97(6): p. 064303. [41]Kiguchi, M. and K. Murakoshi, Fabrication of stable Pd nanowire assisted by hydrogen in solution. Applied Physics Letters, 2006. 88(25): p. 253112. [42]Gurlu, O., et al., Self-organized, one-dimensional Pt nanowires on Ge(001). Applied Physics Letters, 2003. 83(22): p. 4610. [43]Tang, C.C., et al., Simple and high-yield method for synthesizing single-crystal GaN nanowires. Applied Physics Letters, 2000. 77(13): p. 1961. [44]Yang, W., et al., Ultra-Long Single-Crystalline alpha-Si3N4 Nanowires: Derived from a Polymeric Precursor. Journal of the American Ceramic Society, 2005. 88(6): p. 1647-1650. [45]Hong, K., et al., Synthesizing tungsten oxide nanowires by a thermal evaporation method. Applied Physics Letters, 2007. 90(17): p. 173121. [46]Liang, C.H., et al., Catalytic synthesis and photoluminescence of β-Ga[sub 2]O[sub 3] nanowires. Applied Physics Letters, 2001. 78(21): p. 3202. [47]Wan, Q., P. Feng, and T.H. Wang, Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties. Applied Physics Letters, 2006. 89(12): p. 123102. [48]Bae, S.Y., et al., Helical Structure of Single-Crystalline ZnGa2O4 Nanowires. Journal of the American Chemical Society, 2005. 127(31): p. 10802-10803. [49]Wang, Z., J. Hu, and M.-F. Yu, Axial polarization switching in ferroelectric BaTiO3 nanowire. Nanotechnology, 2007. 18(23): p. 235203. [50]Wang, Z., et al., Six-Fold-Symmetrical Hierarchical ZnO Nanostructure Arrays: Synthesis, Characterization, and Field Emission Properties. Crystal Growth & Design, 2010. 10(6): p. 2455-2459. [51]Zhang, Y., et al., Hierarchical Al2O3Nanobelts and Nanowires: Morphology Control and Growth Mechanism. Crystal Growth & Design, 2009. 9(10): p. 4230-4234. [52]Zhang, Y., et al., Three-Dimensional Hierarchical Structure of Single Crystalline Tungsten Oxide Nanowires: Construction, Phase Transition, and Voltammetric Behavior. The Journal of Physical Chemistry C, 2009. 113(5): p. 1746-1750. [53]Li, H., et al., Hierarchical SnO2 Nanostructures: Linear Assembly of Nanorods on the Nanowire Backbones. The Journal of Physical Chemistry C, 2010. 114(4): p. 1844-1848. [54]Chen, Y.-J., et al., Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods. Sensors and Actuators B: Chemical, 2011. 156(2): p. 867-874. [55]Hwang, I.-S., et al., Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sensors and Actuators B: Chemical, 2010. 148(2): p. 595-600. [56]Yu, M.-R., R.-J. Wu, and M. Chavali, Effect of ‘Pt’ loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sensors and Actuators B: Chemical, 2011. 153(2): p. 321-328. [57]Xue, X., et al., Synthesis and H2S Sensing Properties of CuO−SnO2 Core/Shell PN-Junction Nanorods. The Journal of Physical Chemistry C, 2008. 112(32): p. 12157-12160. [58]Wagner, R.S. and W.C. Ellis, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Applied Physics Letters, 1964. 4(5): p. 89-90. [59]Djurišić, A.B., A.M.C. Ng, and X.Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 2010. 34(4): p. 191-259. [60]Suito, K., N. Kawai, and Y. Masuda, High pressure synthesis of orthorhombic SnO2. Materials Research Bulletin, 1975. 10(7): p. 677-680. [61]Dai, Z.R., Z.W. Pan, and Z.L. Wang, Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Advanced Functional Materials, 2003. 13(1): p. 9-24. [62]Kar, A., et al., Growth and properties of tin oxide nanowires and the effect of annealing conditions. Semiconductor Science and Technology, 2010. 25(2): p. 024012. [63]Liu, Z., et al., Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires. Advanced Materials, 2003. 15(20): p. 1754-1757. [64]Zheng, M., et al., Fabrication and Structural Characterization of Large-Scale Uniform SnO2 Nanowire Array Embedded in Anodic Alumina Membrane. Chemistry of Materials, 2001. 13(11): p. 3859-3861. [65]Ma, Y.-J., et al., Low-temperature transport properties of individual SnO2 nanowires. Solid State Communications, 2004. 130(5): p. 313-316. [66]Zhang, D.F., et al., Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods. Advanced Materials, 2003. 15(12): p. 1022-1025. [67]Li, L., et al., Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochemistry Communications, 2010. 12(10): p. 1383-1386. [68]Mathur, S., et al., Size-dependent photoconductance in SnO2 nanowires. Small, 2005. 1(7): p. 713-7. [69]Ye, J., et al., Morphology-controlled synthesis of SnO(2) nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small, 2010. 6(2): p. 296-306. [70]Hu, J.Q., et al., Large-Scale Rapid Oxidation Synthesis of SnO2 Nanoribbons. The Journal of Physical Chemistry B, 2002. 106(15): p. 3823-3826. [71]Park, M.S., et al., Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem Int Ed Engl, 2007. 46(5): p. 750-3. [72]Pauzauskie, P.J. and P. Yang, Nanowire photonics. Materials Today, 2006. 9(10): p. 36-45. [73]Comini, E., et al., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002. 81(10): p. 1869. [74]Wang, B., et al., Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen. The Journal of Physical Chemistry C, 2008. 112(17): p. 6643-6647. [75]Shen, Y., et al., Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sensors and Actuators B: Chemical, 2009. 135(2): p. 524-529. [76]Sysoev, V.V., et al., A Gradient Microarray Electronic Nose Based on Percolating SnO2 Nanowire Sensing Elements. Nano Letters, 2007. 7(10): p. 3182-3188. [77]Hwang, I.-S., et al., A facile fabrication of semiconductor nanowires gas sensor using PDMS patterning and solution deposition. Sensors and Actuators B: Chemical, 2009. 136(1): p. 224-229. [78]Jung, T.-H., et al., SnO2 nanowires bridged across trenched electrodes and their gas-sensing characteristics. Applied Physics A, 2008. 91(4): p. 707-710. [79]Takubo, N., Y. Muraoka, and Z. Hiroi, Effect of UV light irradiation in SnO2thin film. Journal of Physics: Conference Series, 2009. 148: p. 012025. [80]Comini, E., G. Faglia, and G. Sberveglieri, UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sensors and Actuators B: Chemical, 2001. 78(1–3): p. 73-77. [81]Mosadegh Sedghi, S., Y. Mortazavi, and A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sensors and Actuators B: Chemical, 2010. 145(1): p. 7-12. [82]Abdulhalim, I., et al., Acousto-optic modulation using a new chlorotellurite glass. Journal of Applied Physics, 1994. 75(1): p. 519. [83]Arshak, K. and O. Korostynska. Gamma radiation dosimetry using tellurium dioxide thin film structures. in Sensors, 2002. Proceedings of IEEE. 2002. [84]Liu, Z., et al., Room temperature gas sensing of p-type TeO[sub 2] nanowires. Applied Physics Letters, 2007. 90(17): p. 173119. [85]Stadnicka, K., et al., Structure and absolute optical chirality of thulium pyrogermanate crystals. Journal of Physics: Condensed Matter, 1990. 2(22): p. 4795. [86]Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: @c-TeO&quot;2. Journal of Physics and Chemistry of Solids, 2000(9): p. 1499. [87]Mirgorodsky, A.P., et al., Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases. Journal of Physics and Chemistry of Solids, 2000. 61(4): p. 501-509. [88]Idalgo, E. and E.B. Araujo, Induced crystallization on tellurite 20Li2O–80TeO2 glass. Journal of Physics D: Applied Physics, 2007. 40(11): p. 3494-3499. [89]Hodgson, S.N.B. and L. Weng, Chemical and sol–gel processing of tellurite glasses for optoelectronics. Journal of Materials Science: Materials in Electronics, 2006. 17(9): p. 723-733. [90]Siciliano, T., et al., Ammonia sensitivity of rf sputtered tellurium oxide thin films. Sensors and Actuators B: Chemical, 2009. 138(2): p. 550-555. [91]Jiang, Z.-Y., et al., Synthesis of α-tellurium dioxide nanorods from elemental tellurium by laser ablation. Inorganic Chemistry Communications, 2004. 7(2): p. 179-181. [92]Huriet, A., S. Daniele, and L.G. Hubert-Pfalzgraf, Effect of titanium additives on the growth of tellurium dioxide crystals in a sol–gel process. Materials Letters, 2005. 59(19-20): p. 2379-2382. [93]Lan, W.-J., et al., Dispersibility, Stabilization, and Chemical Stability of Ultrathin Tellurium Nanowires in Acetone:  Morphology Change, Crystallization, and Transformation into TeO2 in Different Solvents. Langmuir, 2007. 23(6): p. 3409-3417. [94]Liu, Z., et al., Synthesis and Characterization of TeO2Nanowires. Japanese Journal of Applied Physics, 2008. 47(1): p. 771-774. [95]Jain, H. and A.S. Nowick, Electrical conduction in paratellurite (TeO2) crystals. physica status solidi (a), 1981. 67(2): p. 701-707. [96. K. Doi, T.S.a.K.H., Electrical Properties of TeO2. 1975. [97]Kim, H., et al., ENHANCED GAS SENSING PROPERTIES OF p-TYPE TeO2 NANORODS FUNCTIONALIZED WITH Pd. Nano, 2011. 06(05): p. 455. [98]Siciliano, T., et al., Transition from n- to p-type electrical conductivity induced by ethanol adsorption on α-tellurium dioxide nanowires. Sensors and Actuators B: Chemical, 2009. 138(1): p. 207-213. [99]Jin, C., et al., TeO2-core/SnO2-sheath nanowires. Physica E: Low-dimensional Systems and Nanostructures, 2011. 43(7): p. 1346-1350. [100]Kim, S.S., et al., Drastic change in shape of tetragonal TeO2 nanowires and their application to transparent chemical gas sensors. Applied Surface Science, 2011. 258(1): p. 501-506. [101]Jin, C., H. Kim, and C. Lee, Enhancement of the emission from TeO2 nanorods by encapsulation with ZnO. Crystal Research and Technology, 2011. 46(10): p. 1065-1070. [102]Jin, C., et al., Structure and photoluminescence properties of TeO2/In2O3 coaxial nanowires. Current Applied Physics, 2011. 11(3): p. S274-S278. [103]Filippo, E., et al., Fabrication of α-TeO2 smooth and beaded microwires by thermal evaporation method. Journal of Crystal Growth, 2011. 336(1): p. 101-105. [104]Kim, H.W., H.G. Na, and J.C. Yang, Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides. Chemical Engineering Journal, 2011. 170(1): p. 326-332. [105]He, J.H., et al., Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small, 2006. 2(1): p. 116-20. [106]Lin, Y.-H., et al., Structural and Cathodoluminescence of Sb-Doped SnO<SUB>2</SUB> Nanostructures. Journal of Nanoscience and Nanotechnology, 2010. 10(4): p. 2336-2341. [107]Yu, F., et al., Fabrication of SnO2 one-dimensional nanosturctures with graded diameters by chemical vapor deposition method. Journal of Crystal Growth, 2010. 312(2): p. 220-225. [108]Muenow, D.W., et al., Vaporization, thermodynamics and structures of species in the tellurium + oxygen system. Transactions of the Faraday Society, 1969. 65: p. 3210. [109]Noguera, O., et al., Vibrational and structural properties of glass and crystalline phases of TeO2. Journal of Non-Crystalline Solids, 2003. 330(1-3): p. 50-60. [110]John F. Moulder, W.F.S., Peter E. Sobol, Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. 1992. [111]Tsiulyanu, D., et al., Effect of annealing and temperature on the NO2 sensing properties of tellurium based films. Sensors and Actuators B: Chemical, 2004. 100(3): p. 380-386. [112]Chung, H.-S., et al., A Generic Approach for Embedded Catalyst-Supported Vertically Aligned Nanowire Growth. Nano Letters, 2008. 8(5): p. 1328-1334. [113]C. Wagner, S., W., Theory of ordered mixed phases, I. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY and CHEMICAL PHYSICS, 1931. 11: p. 163. [114]Anderson, R.L., Experiments on Ge-GaAs heterojunctions. Solid-State Electronics, 1962. 5(5): p. 341-351. [115]Honda, H., A. Ishizaki, and R. Soma, Application of photocatalytic reactions caused by TiO2 film to improve the maintenance factor of lighting systems. with discussion, 1998. 27(1): p. 42-49. [116]Kongkanand, A., R. Martinez Dominguez, and P.V. Kamat, Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons. Nano Letters, 2007. 7(3): p. 676-680. [117]Gardner, J.W., A diffusion-reaction model of electrical conduction in tin oxide gas sensors. Semiconductor Science and Technology, 1989. 4(5): p. 345. [118]Thong, L.V., L.T.N. Loan, and N. Van Hieu, Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sensors and Actuators B: Chemical, 2010. 150(1): p. 112-119. [119]Tsiulyanu, D., et al., Characterization of tellurium-based films for NO2 detection. Thin Solid Films, 2005. 485(1-2): p. 252-256. [120]Lu, G., et al., UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2012. 162(1): p. 82-88. [121]Feng, P., et al., Achieving fast oxygen response in individual β-Ga[sub 2]O[sub 3] nanowires by ultraviolet illumination. Applied Physics Letters, 2006. 89(11): p. 112114. [122]Ao, D. and M. Ichimura, UV irradiation effects on hydrogen sensors based on SnO2 thin films fabricated by the photochemical deposition. Solid-State Electronics, 2012. 69: p. 1-3. [123]Weisz, P.B., Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis. The Journal of Chemical Physics, 1953. 21(9): p. 1531-1538. [124]Lu, G., L.E. Ocola, and J. Chen, Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes. Advanced Materials, 2009. 21(24): p. 2487-2491. [125]Youn, S.K., et al., Catalyst-Free Growth of ZnO Nanowires Based on Topographical Confinement and Preferential Chemisorption and Their Use for Room Temperature CO Detection. The Journal of Physical Chemistry C, 2010. 114(22): p. 10092-10100.
摘要: 本實驗透過兩階段氣相傳輸法成功合成出TeO2/SnO2樹枝狀奈米異質結構,並以適當的溫度退火熱處理得到TeO2/SnO2串珠狀奈米異質結構。我們也藉由分段實驗觀察在不同製程溫度下TeO2分枝奈米結構於SnO2主幹奈米結構的形貌演化過程,探討TeO2/SnO2樹枝狀奈米異質結構的成長機制。結果顯示,當加熱到310℃時,TeO2薄膜會先完全包覆SnO2主幹奈米結構,之後藉由Au觸媒VLS及TeO2自催化VS的機制在垂直於SnO2主幹奈米結構的方向成長出TeO2分枝奈米結構,形成TeO2/SnO2樹枝狀奈米異質結構。將TeO2/SnO2樹枝狀奈米異質結構加熱到400℃持溫20分鐘,原本完全包覆SnO2主幹的TeO2分枝會經由汽化或團聚變成TeO2/SnO2串珠狀奈米異質結構。氣體感測特性方面,我們將SnO2奈米線、TeO2/SnO2樹枝狀奈米異質結構及TeO2/SnO2串珠狀奈米異質結構製成氣體感測元件,以UV光輔助量測它們在室溫下對不同濃度的CO與NO2的感測特性。量測結果顯示,TeO2/SnO2樹枝狀奈米異質結構由於有較大比表面積以及TeO2分枝奈米結構上的懸浮鍵的作用,表現出比單純SnO2奈米線更高的敏感度;而TeO2/SnO2串珠狀奈米異質結構由於額外在SnO2主幹奈米結構與TeO2串珠奈米結構間有大量的p-n接面,又比TeO2/SnO2樹枝狀奈米異質結構表現出最佳的靈敏度。
In this study, we successfully synthesized TeO2/SnO2 branch-like hierarchical nanostructures by a two step vapor transport method, and then obtained TeO2/SnO2 bead-like hierarchical nanostructures by a suitable heat treatment. The growth mechanism of TeO2/SnO2 branch-like hierarchical nanostructures was investigated by observing the structure evolution during the synthesis process. By using XRD, TEM and SEM analysis, it can be observed that TeO2 films will first cover the SnO2 backbone nanowires when the synthesis temperature was reached 310℃, and the TeO2 branch nanowires will subsequently grow out of the SnO2 backbones in perpendicular directions by both Au catalyst vapor-liquid-solid (VLS) and self-catalytic vapor–solid (VS) growth mechanism. For the gas sensing properties, gas sensors based on the SnO2 nanowires, TeO2/SnO2 branch-like and TeO2/SnO2 bead-like hierarchical nanostructures are fabricated and their UV-enhanced gas sensing properties to CO and NO2 gases with different concentrations were measured. The experimental results showed that the TeO2/SnO2 branch-like hierarchical nanostructures showed a better gas sensing performance than the SnO2 nanowires, which can be attributed to their higher surface-to-volume ratio and the dangling bonds associated with the TeO2 branched nanowires. Compared with the TeO2/SnO2 branch-like hierarchical nanostructures, the TeO2/SnO2 bead-like hierarchical nanostructures exhibited even better sensitivities to CO and NO2 gases due to the additional formation of p-n junctions between the SnO2 backbone nanowires and the TeO2 beads.
其他識別: U0005-1607201216384500
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.