Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11307
標題: 不同丙烷/氨氣比例對以熱化學氣相沉積製備碳薄膜性質之影響
Effects of different propane/ammonia ratios on the properties of carbon films prepared by thermal chemical vapor deposition
作者: 鄭仁彥
Cheng, Jen-Yen
關鍵字: 丙烷
Propane
氨氣
熱化學氣相沉積
碳薄膜
Ammonia
Thermo Chemical Vapor Deposition
Carbon Film
出版社: 材料科學與工程學系所
引用: [1] J. Robertson, Materials Science and Engineer: R: Reports, 37 (2002) 129. [2] G. Kalita, M. Masahiro, H. Uchida, K. Wakita, and M. Umeno, Materials Letters,64 (2010) 2180. [3] C. Frondel and U. B. Marvin, Nature, 214 (1967) 587. [4] H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl, and R. E. Smalley, Nature, 318 (1985) 162. [5] E. Xu, J. Wei, K. Wang, Z. Li, X. Gui, Y. Jia, H. Zhu, and D. Wu, Carbon, 48 (2010) 3097. [6] A. G. Aberle, Progress in Photovoltaics: Research and Applications, 8 (2000) 473. [7] M. A. Green , Physica E, 14 (2002) 65. [8] H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials & Solar Cells, 93 (2009) 1461. [9] E. Kohn, M. Adamschik, P. Schmid, A. Denisenko, A. Aleksov, and W. Ebert, Journal of Physics D: Applied Physics, 34 (2001) R77. [10] R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, Journal of Physics: Condensed Matter, 21 (2009) 364221. [11] J. M. Zazula, LHC Project Note, 78/97 (1997) 1. [12] M. J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, (2006). [13] R. J. King, Geology Today, 22 (2006) 71. [14] A. Ilie, O. Harel, N. M. J. Conway, T. Yagi, J. Robertson, and W. I. Milne, Journal of Applied Physics, 87 (2000) 789. [15] V. S. Veerasamy, G. A. J. Amaratunga, C. A. Davis, A. E. Timbs, W. I. Milne, and D. R. Mackenzie, Journal of Physics: Condensed Matter, 5 (1993) L169. [16] V. S. Veerasamy, G. A. J. Amaratunga, J. S. Park, H. S. Mackenzie, and W. I. Milne, IEEE Transations on Electrics Devices, 42 (1995) 577. [17] V. S. Veerasamy, G. A. J. Amaratunga, J. S. Park, W. I. Milne, and H. S. Mackenzie, Applied Physics Letters, 64 (1994) 2297. [18] S. R. P. Silva, and G. A. J. Amaratunga, Thin Solid Films, 270 (1995) 194. [19] J. C. Han, M. L. Tan, J. Q. Zhu, S. H. Meng, B. S. Wang, S. J. Mu, and D. W. Cao, Applied Physics Letters, 90 (2007) 083508. [20] W. S. Choi, K. Kim, J. Yi, and B. Hong, Materials Letters, 62 (2008) 577. [21] A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [22] M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [23] X. M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [24] A. Czyzniewski, Surface and Coatings Technology, 203 (2009) 1027. [25] K. M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [26] W. E. Billups, and M. A. Ciufolini, “Buckminsterfullerenes, ” VCH Publishers, New York, (1993). [27] Y. Jin, R. J. Curry, J. Sloan, R. A. Hatton, L. C. Chong, N. Blanchard, V. Stolojan, H. W. Kroto, and S. R. P. Silva, Journal of Materials Chemistry, 16 (2006) 3715. [28] P. R. Somani, S. P. Somani, and M. Umeno, Carbon Science and Technology , 1 (2008) 1. [29] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature, 347 (1990) 354. [30] S. Iijima, Nature, 354 (1991) 56. [31] L. R. Radovic, “Chemistry and Physics of Carbon,” Marcel Dekker, New York, (2003). [32] T. W. Odom, J. H. Hafner, and C. M. Lieber, Topics in Applied Physics, 80 (2001) 173. [33] R. L. McCreery, Chemical Reviews, 108 (2008) 2646. [34] A. Merkoci, Microchimica Acta, 152 (2006) 157. [35] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306 (2004) 666. [36] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321 (2008) 385. [37] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science, 6 (2008) 1308. [38] A. K. Geim, Science, 324 (2009) 1530. [39] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, The Journal of Physical Chemistry B, 108 (2004) 19912. [40] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45 (2007) 1558. [41] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Materials, 8 (2009) 203. [42] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature, 457 (2009) 706. [43] Z. Y. Juang, C. Y. Wu, A. Y. Lu, C. Y. Su, K. C. Leou, F. R. Chen, and C. H. Tsai, Carbon, 48 (2010) 3169. [44] Y. Xu, and X. T. Yan, ’’Chemical vapour deposition: an integrated engineering design for advanced material,” SpringerLink, London, (2010). [45] Z. Hu, and K. J. Huttinger, Carbon, 41 (2003) 1501. [46] Y. S. Han, and J. Y. Lee, Electrochimica Acta, 48 (2003) 1073. [47] H. Nakayama, K. Takatsuji, S. Moriwaki, K. Murakami, K. Mizoguchi, and M. Nakayama, Thin Solid Films, 430 (2003) 309. [48] C. A. Taylor, M. F. Wayne, and W. K. S. Chiu, Surface and Coatings Technology, 182 (2004) 131. [49] W. N. Li, Y. S. Ding, S. L. Suib, J. F. DiCarlo, and F. S. Galasso, Surface andCoatings Technology, 190 (2005) 366. [50] S. T. Shiue, H. C. Lin, T. Y. Shen, and H. Ouyang, Applied Physics Letters, 86 (2005) 251910. [51] C. Y. Lin, L. H. Lai, Y. X. Liu, S. T. Shiue, and H.Y. Lin, Journal of The Electrochemical Society, 158 (2011) 445. [52] Propane Gas Association of Canada, Propane & The Environment, info@propanegas.ca [53] V. Baranauskas, S. F. Durrant, M. C. Tosin, A. F. Peterlevitz, B. B. Li, and S. G. Castro, Thin Solid Films, 355 (1999) 157. [54] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, (2001). [55] R. L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley&Sons, Canada, (2000). [56] F. Tuinstra, and J. L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [57] P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon, 33 (1995) 959. [58] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Jill Chastain, U.S.A., (1992). [59] G. Binning, C. F. Quate, and C. Gerber, Physical Review Letters, 56 (1986) 930. [60] T. Young, Philosophical Transactions of the Royal Society Lond B, 95 (1805) 65. [61] R. N. Wenzel, Journal of Industrial and Engineering Chemistry, 28 (1936) 988. [62] Instruction manual of the Four-point Probe (Model:QT-50) http://www.mems.louisville.edu/lutz/resources/sops/sop45.html [63] Y. S. Ding, W. N. Li, S. Iaconetti, X. F. Shen, J. DiCarlo, F. S. Galasso, and S. L. Suib, Surface & Coatings Technology, 200 (2006) 3041. [64] A. C. Ferrari, and J. Robertson, Physical Review B, 61 (2000) 14095. [65] A. C. Ferrari, and J. Robertson, Physical Review B, 63 (2001) 121405. [66] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43 (2005) 1731. [67] T. Jawhari, A. Roid, and J. Casado, Carbon, 33 (1995) 1561. [68] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43 (2005) 1731. [69] J. M. Vallerot, X. Bourrat, A. Mouchon, and G. Chollon, Carbon, 44 (2006) 1833. [70] S. Potgieter-Vermaak, N. Maledi, N. Wagner, J. H. P. Van Heerden, R. Van Grieken, and J. H. Potgieter, Journal of Raman Spectroscopy, 42 (2011) 123. [71] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-paniago, and M. A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [72] E. Tomasella, C. Meunier, and S. Mikhailov, Surface & Coatings Technology, 141 (2001) 286. [73] M. Lejeune, O. D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films, 389 (2001) 233. [74] P. Me’rel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [75] G. L. Du , N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surface and Coatings Technology, 201 (2007) 5815. [76] H. S. Zhang, and K. Komvopoulos, Journal of Applied Physics, 106 (2009) 093504. [77] R. N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [78] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [79] M. Iwaki, Y. Suzuki, A. Nakao, and H. Watanabe, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 127/128 (1997) 208. [80] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [81] T. H. Fang, and W. J. Chang, Applied Surface Science, 220 (2003) 175. [82] J. H. Son, M. Y. Park, and S. W. Rhee, Thin Solid Films , 335 (1998) 22.
摘要: 本論文是以熱化學氣相沉積法在石英基板上製備碳薄膜,並探討不同C3H8/(C3H8+NH3) 比例對碳薄膜性質之影響。本實驗利用之儀器有場發式掃描電子顯微鏡、X光繞射儀、拉曼光譜儀、X光光電子能譜儀、原子力顯微鏡、接觸角量測儀和四點探針儀等,分別量測碳薄膜的厚度、微觀結構、表面粗糙度、表面特性及電學性質。本實驗以五種不同的 C3H8/(C3H8+NH3) 比例進行碳薄膜沉積,分別為20%、 40%、 60%、 80% 及100%;並設定其沉積溫度、工作壓力、總氣體流量及沉積時間,分別為1153 K、 40 kPa、 40 sccm 及 10分鐘。 研究結果發現,隨著丙烷含量比例增加,主氣流中碳原子自由基 (C‧) 的數量也跟著增加,因而碳薄膜沉積速率變快。另外由實驗得知碳薄膜沉積的過程中,9 個氨氣分子會抑制 1個丙烷分子。碳薄膜沉積速率和丙烷分壓成正比,且為趨近 1.5次方關係。碳薄膜表面顆粒的數量及大小隨碳薄膜厚度增加而增加,碳薄膜表面粗糙度也因此變大。由碳薄膜量測結果得知結構有序程度、平均晶粒大小 (La和Lc) 、碳碳雙鍵 (sp2 C=C) 含量及水接觸角會隨著丙烷含量比例增加而下降。
This study investigates the effects of different C3H8/(C3H8+NH3) ratios on the properties of carbon films prepared by thermal chemical vapor deposition. The thin film thickness, microstructure, surface roughness, surface property, and electrical property of carbon films were investigated by field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force microscopy, contact angle meter, and four-points probe. Five kinds of carbon films are deposited with the different C3H8/(C3H8+NH3) ratios of 20%, 40%, 60%, 80% and 100%. The deposition temperature, working pressure, mass flow rate, and deposition time were set to 1153 K, 40 kPa, 40 sccm, and 10 min, respectivily. The results indicate that the deposition rate increases with increasing the C3H8/(C3H8+NH3) ratio, which is resulted from the increase of the carbon free radical (C‧) in the main flow. Nine NH3 molecule will suppress about one C3H8 molecule to form carbon films, and the deposition rate of carbon films is proportional to the partial pressure of propane with a power order of 1.5. The number and size of particles on carbon coating surfaces increase with the coating thickness, therefore the surface roughness of carbon films also increases. As the C3H8/(C3H8+NH3) ratio increases, the degree of ordering, nano-crystallite size (La and Lc) , sp2 carbon atoms, and water contact angle decrease.
URI: http://hdl.handle.net/11455/11307
其他識別: U0005-2308201201575500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201201575500
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.