Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11309
標題: 不同硒分子態對CIAS薄膜微結構的影響
Influence of Se molecule structure on the microstructure of Cu(In1-xAlx)Se2 thin films
作者: 鍾德儒
Jung, De-Ru
關鍵字: 太陽能電池
solar cells
濺鍍硒化
前驅層
sputtered-selenization
precursors
出版社: 材料科學與工程學系所
引用: 參考文獻 [1]K. Ito, &quot;Prospect of Fossil Fuels in the book of Energy for 21st Century,&quot; 3rd annual Meeting Report for Nuclear Fusion, 2000. [2]http://mindcheese.com/wordpress/?p=658 [3]龍宣宏, “硒化銅銦鎵太陽能電池接面特性對元件表現之探討” P.2 2005. [4]W. G. Adams and R. E. Day, Proc. R. Soc., A25 (1877) 113. [5]蔡進譯, “超高效率太陽電池”, 物理雙月刊, 27卷五期, P. 701, 2005. [6]S. O. Kasap, &quot;Optoelectronics and Photonics: Principles and Practices,&quot; Prentice Hall, Chapter 6, 2001. [7]G. S. Girolami, P. A. Gorlin, and J. S. Suslick, Inorg. Chem., 33 (1994) 626-627. [8]http://www.ine.uh.edu/research/device-theory/index.php [9]S. M. Sze and K. K. Ng, &quot;Physics of Semiconductor Devices,&quot; Wiley-Interscience: John WileyᄀᆴSons, third ed. (2007). [10]P. Panse, &quot;Copper Gallium Diselenide Solar Cells: Processing, Characterization and Simulation Studies,&quot; University of South Florida (USF), 2003. [11]S. M. Sze, &quot;Physics of Semiconductor Devices,&quot; Wiley Eastern Limited, New Delhi, 1981. [12]A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells, Academic Press, New York-London, 1983. [13]R. H. Hube, &quot;Photoelectronic Properties of Semiconductors,&quot; Cambridge University Press, Cambridge, 1992. [14]X. X. Liu and J. R. Sites, J. Appl. Phys., 75 (1994) 577. [15]V. Kumar, &quot;Characterization Of Large Area Cadmium Telluride Films And Solar Cells Deposited On Moving Substrates By Close Spaced Sublimation&quot;. P.10 [16]K. Ramanayjan, G. Teeter, J. C. Keane, and R. Noufi, Thin Solid Films 480-481 (2005) 499-502. [17]Http://pvcdrom.pveducation.org/ [18]K. G. Deepa, P. Lekha, S. Sindhu, Solar Energy 86 (2012) 326-330. [19]D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28 (1976) 671. [20]D. L. Staebler and C. R. Wronski, Appl. Phys. Lett., 31 (1977) 292. [21]陳宗隴, “影響硒化銅銦鎵太陽能電池表現之元件特性”. (2006) [22]N. Romeo, A. Bosio, V. Canevari, A. Podesta, Sol. Energy 77 (2004) 795-801. [23]First Solar web page. <www.firstsolar.com>, 2010. [24]X. Wu, &quot;High-efficiency polycrystalline CdTe thin film solar cells&quot;, Thin Solid Films in preparation. [25]A. Gupta, A. D. Compaan, Appl. Phys. Lett,. 85 (2004) 648-686. [26]http://www.nrel.gov/ncpv/ [27]I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovolt: Res. Appl., 16 (2008) 235-239. [28]S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, and W. N. Shafarman, Appl. Phys. Lett., 81 (2002) 1350. [29]K. Kushiya, M. Tachiyuki, Y. Nagoya, A. Fujimaki, B. Sang, D. Okumura, M. Satoh, O. Yamase, Solar Energy Mater. Solar Cell 67 (2001) 11. [30]G. M. Hanket, J. H. Boyle, and W. N. Shafarman, Institute of Energy Conversion (IEC), University of Delaware, Newark, DE 19716. [31]S. B. Zhang, S. H. Wei and A. Zunger, Physical review letters 78, 21. [32]H. J. Moller, &quot;Semiconductor for solar cell&quot;, Landon, Artech House, 1993. [33]T. Loher, W. Jacgermann, C. Pettenkofer, J. Appl. Phys., 77 (1995) 731. [34]M. Powalla and B. Dimmler, Sol. Energy Mater. Sol. Cells 75 (2003) 27-34. [35]L. L. Kazmerski, F. R. White, and G. K. Morgan, Appl. Phys. Lette., 29 (1976) 268. [36]V. S. Saji, I. H. Choi, and C. W. Lee, Solar Energy 85 (2011) 2666-2678. [37]T. Nakada and A. Kunioka, Jpn. J. Appl. Phys., 37 (1998) 1065-1067. [38]D. Y. Lee, J. H. Yun, K. H. Yooh, and B. T. Ahn, Thin Solid Films 410 (2002) 171-176. [39]A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann and A. N. Tiwari, Prog. Photovoltaic: Res. Appl., 12 (2004) 93-111. [40]T. Nakada, K. Migita, and A. Kunioka, Jpn. J. Appl. Phys., 32 (1993) 1169. [41]V. Akhavan, M. G. Panthani, B. Goodfellow, D. K. Reid, B. A. Korgel, &quot;Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices&quot;, Opt. Express 18 (2010) A411-420. [42]M. Bodegard, K. Granath, and L. Stolt, Thin Solid Films 9 (2000) 361-362. [43]D. Rudmann, G. Bilger, M. Kealin, F.-J. Hauh, H. Zogg, and A. N. Tiwari, Thin Solid Films 431-432 (2003) 37-40. [44]D. W. Niles, M. Al-Jassim, and K. Ramanathan, J. Vac. Sci. Technol. A, 17 (1999) 291-296. [45]J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao, and A. A. Rockett, Appl. Phys. Lett., 80 (2002) 4540. [46]A. Rockett, Thin Solid Films 480-481 (2005) 2-7. [47]K. Orgassa, H. W. Schock, and J. H. Werner, Thin Solid Films 431/432 (2003) 387. [48]F. Kessler and D. Rudmann, Solar Energy 77 (2004) 685. [49]J. H. Yoon, K. H. Yoon, W. M. Kim, J. K. Park, Y. J. Baik, T. Y. Seong, and J. H. Jeong, J. Phys. D: Appl. Phys., 44 (2011) 425302. [50]N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, Sol. Energy Mater. Sol. Cells 67 (2001) 209. [51]S. Nishiwaki, N. Kohara, T. Negami, and T. Wada, Jpn. J. Appl. Phys., 37 (1998) L71. [52]M. Bodegard, K. Granath, L. Stolt, A. Rockett, Sol. Energy Mater. Sol. Cells 58 (1999) 199. [53]H. H. Chang, T. X. Zhong, H. Y. Ueng and H. L. Hwang, Jap. J. Appl. Phys., 39 (2000). [54]S. H. Kwon, S. C. Park, B. T. Ahn, K. H. Yoon, and J. Song, Solar Energy 64 (1998) 55-60. [55]D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, J. Appl. Phys., 73 (1993) 2902. [56]S. Chaisitsak, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., 41 (2002) 507-513. [57]D. Liao and Angus R., J. Appl. Phys., 104 (2008) 094908. [58]T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, W. C. Chen, Solid-State Electron 56 (2011) 175-178. [59]A. M. Gabor, J. R. Tuttle, M. H. Bode, A. Franz, A. L. Tennant, M. A. Contreras, R. Noufi, D. G. Jensen, and A. M. Hermann, Sol. Energy Mater. Sol. Cells 41-42 (1996) 247-260. [60]M. Gloeckler and J. R. Sites, Department of Physics Colorado State University, Fort Collins, CO 80523-1875 USA. [61]M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361-362 (2000) 527. [62]J. T. Heath, J. D. Cohen, and W. N. Shafarman, Thin Solid Films 426 (2003) 431-432. [63]C. H. Hung, S. S. Li Rieth, A. Halani, IEEE 2000 696-699. [64]D. L. Feucht, J. Vac. Sci. Technol., 14 (1977) 57. [65]D. Cahen and R. Noufi, Appl. Phys. Lett., 54 (1989) 558. [66]W. J. Jeong, S. K. Kim, and G. C. Park, Thin Solid Films 506-507 (2006) 180-183. [67]M. Nisitani, T. Negami, M. Ikeda, N. Kohara, M. Terauchi, T. Wada, 1th World Conference on Photovoltaic Energy Conversion, Hawaii, (1994) 222. [68]S. Kijima and T. Nakada, Appl. Pgys. Express 1 (2008) 075002. [69]T. Miyano, R. Hashimoto, Y. Kanda, T. Mise and T. Nakada, in Technical Digest of the International PVSEC-17, Fukuoka, Japan, (2007) 5P-P3-17. [70]R. K. Gupta, K.Ghosh, S. R. Mishra, and P. K. Kahol, Appl. Surf. Sci., 253 (2007) 9422. [71]N. Yamada, T. Tatejima, H. Ishizaki, and T. Nakada, Jpn. J. Appl. Phys., 45 (2006) L1179-1182. [72]A. E. Owen, A. P. Firth, and P. J. S. Ewen, Phil. Mag., B 52 (1985) 347. [73]A. Zakery and S. R. Elliott, J. Non. Cryst. Solids 330 (2003) 1-12. [74]A. B. Seddon, J. Non. Cryst. Solids 184 (1995) 44-50. [75]L. A. Wahab, Proceeding of the Second International Conference. Cairo (1997) 215. [76]W. H. Zachariasen, J. Am. Chem. Soc., 54 (10) (1932) 3841. [77]S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science 220, 671 (1983) [78]M. Kawarada and Y. Nishina, Jpn. J. Appl. Phys., 14 (1975) 1519. [79]K. Nagata, K. Ishibashi, and Y. Miyamoto, Jpn. J. Appl. Phys., 20 (1981) 463-469. [80]A. Feltz, &quot;Amorphous and Vitreous Non-organic Solids&quot;, &quot;Mir&quot; Publ., Moscow, 1986. [81]G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R.C. Keezer, Solid State Commun., 5 (1967) 113-117. [82]B. W. Corb, W. D. Wei, and B. L. Averbach, J. Non-Cryst. Solids 53 (1982) 29-42. [83]Y. Miyamoto, Jpn. J. Appl. Phys., 16 (1977) 2257. [84]Y. Miyamoto, Jpn. J. Appl. Phys., 19 (1980) 1813. [85]R. D. Burbank, Acta. Cryst. Cambridge 4 (1951) 140 ; 5 (1952) 236. [86]K. Nagata, H. Tashiro and Y. Miyamoto, Jpn. J. Appl. Phys., 20 (1981) 2265. [87]V. S. Minaev. J. Optoelectron, Adv. Mater., 6(1) (2004) 103. [88]S. Brieglieb, Z. Phys. Chem., A 144 (1929) 321. [89]H. Richter and F. Herre, Z. Naturforsch 13a (1958) 874. [90]M. Misawa and K. Suzuki, J. Phys. Soc. Jpn., 44 (1978) 5. [91]J. W. Moody and R. C. Hines, Battelle Memorial Institute Report K-7209 (1966). [92]R. Zallen, G. Lucovsky, In: Selenium, Eds. R. A. Zigaro, N. C. Cooper, Van Nostrand-Reinhold, New York, P. 167, 1974. [93]N. Edison, &quot;Allotropy of Chemical Elements&quot;, &quot;Mir&quot; Publ., Moscow, 1966. [94]W. C. Cooper, R. A.Westbury, In: Selenium, Eds. R. A. Zingaro, W. C. Cooper, Van Nostrand Reinhold Company, New York-London-Melbourne, p. 87 (1974). [95]M. Kawarada and Y. Nishina, Jap. J. Appl. Phys., 14 (1975) 1519. [96]G. Gattow and M. Draeger, Z. Anorg. allgem. Chem., 343 (1966) 55. [97]V. A. Obolonchik, Selenides, &quot;Metallurgy&quot; Publ., Moscow, 1972. [98]H. Krebs and F. Schultze-Geghardt, Acta. Bull., 4 (1969) 19. [99]H. Hendus, Z. Phys., 119 (1942) 265. [100]M. Misawa and K. Suzuki, Trans. Jpn. Inst. Met., 18 (1977) 427. [101]G. Briegleb, Z. Physik. Chem., A144 (1929) 321. [102]S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, and W. N. Shafarman, Appl. Phys. Lett., 81 (2002) 7. [103]S. Wei and A. Zunger, J. Appl. Phys., 78 (1995) 3846. [104]F. Itoh, O. Saitoh, M. Kita, H. Nagamori, and H. Oike, Sol. Energy Mater. Sol. Cells 50 (1998) 119-125. [105]J. L?pez-Garc?a and C. Guill?n, Thin Solid Films 517 (2009) 2240-2243. [106]S. Jost, F. Hergert, R. Hock, M. Purwins, and R. Enderle, Phys. Stat. Sol. (a) 203 (2006) 2581-2587. [107]J. Olejn??ek, C. A. Kamler, S. A. Darveau, C. L. Exstrom, L. E. Slaymaker, A.R. Vandeventer, N. J. Ianno, and R. J. Soukup, Thin Solid Films 519 (2011) 5329-5334. [108]B. M. Basol, V. K. Kapur, C. R. Leidholm, R. Roe, A. Halani and G. Norsworthy: NREL/SNL Photovoltaics Prog. Rev. Proc. 14th Conf.-A Joint Meet. (AIP, New York, 1996) AIP Conf. Proc. 394. [109]B. E. Knox, Mat. Res. Bill., 3 (1968) 329-336. [110]C. H. Chang, A. Davydov, B. J. Stanbery, and T. J. Anderson, in Photovoltaic Specialists Conference, 1996, Conference Record of the Twenty Fifth IEEE [111]J. Berkowitz and W. A. Chupka, J. Chem. Phys., 45 (1966) 4289. [112]D. X. Pang, J. T. Wang, and B. Z. Ding, J. Non-Cryst. Solids 107 (1989) 239-243. [113]N. Sakai and T. Kajiwara, Jpn. J. Appl. Phys., 21 (1982) 9. [114]W. K. Kim. &quot;Study of reaction pathways and kinetics in Cu(InxGa1-x)Se2 thin film growth&quot;, PhD. Gainesville, FI : University of Florida, 2006. [115]A. R. West, &quot;Solid State Chemistry and Its Applications&quot;, Wiley, 1984. [116]C. Rincon, S. M. Wasim, and G. Marin, Appl. Phys. Lett., 73 (1998) 4. [117]J. Weszka, Ph. Daniel, A. Burian, A. M. Burian, and A. T. Nguyen, J. Non-Cryst. Solids 265 (2000) 98-104. [118]K. Kondo, H. Sano, and K. Sato, Thin Solid Films 326 (1998) 83-87. [119]S. Chaisitsak, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., 41 (2002) 507-513.
摘要: CIS化合物為直接能隙半導體材料,由於具備較高的光學吸收係數3.6×105 cm-1,與本質缺陷特性,因此在薄膜太陽能電池的材料選擇上備受青睞,目前該材料所製備之太陽能電池最高效率由德國太陽能研究中心團隊(ZSW),利用三階段蒸鍍法製備之CIGS太陽能元件的20.3%為代表,然而對於產業的運用,除了大面積生產外,需能夠同時符合高效率與低成本,部分研究開始傾向於濺鍍硒化法與非真空法,如電鍍與印刷製程,不過以製程穩定度為考量,濺鍍硒化法仍常被使用。 本研究前驅層的製備,為CuAl/In/Se的堆疊方式,分別以直流磁控濺鍍法製備金屬層,蒸鍍法沉積硒層並硒化,過程中皆使用固態硒粒。藉由在硒化前透過元素硒的基礎研究,改變硒化參數如升溫速率、持溫時間與溫度結點,觀察CIAS薄膜於富銦與富銅成分下,各階段薄膜結構所產生之變化。經由XRD與SEM分析結果顯示,透過第二階段的升溫速率與溫度結點變化,能夠同時影響硒結晶速率與熔融態硒的擴散速率,因而間接改變硒化物的反應路徑,反之,當硒化溫度提高至350與550oC時,在過多的CuxSe二次相中,升溫速率的改變將影響CIAS薄膜之優選方位。
Thin film solar cells based on the compound semiconductor CuInSe2 (CIS) have been proven to be a promising material with high absorption coefficient 3.6�105 cm-1. Also, it can be modified near surface defects and related junction properties. Up to now, it is demonstrated Cu(In,Ga)Se (CIGS) solar cells by three-stage evaporation with record high 20.3% efficiency at the Zentrum fuer Sonnenenergie und Wasserstoff-Forschung (ZSW). However, we must overcome challenge that is to combine low-cost and high efficiency requests on a large-scale for industrial application. Indeed, most of the researches prefer two-stage selenization and non-vacuum technology such as electrodeposition and ink. Among the method mentioned above, sputter-selenization is most widely used because its reproducible quality. CuAl/In precursor films with varying Cu/(In + Al) ratios were sequential-sputtered onto soda-lime glass substrates and subsequently selenium layer was deposited under high vacuum using thermally evaporated solid selenium. We then studied structural influence of CuIn1-xAlxSe thin films fabricated by selenization under over-pressure of selenium in a graphite box, specifically, the effect on the crystallinity of CIAS, which can be controlled by slenization parameters such as heating rate, annealed time and temperature. Besides, in accordance with these selenization conditions, the reaction pathways and phase evolution of the staked CuAl/In/Se precursors during CIAS formation were examined by X-ray diffraction and Raman spectrograph. It is concluded that the influence of heating rate and temperature on crystallization rate and diffusion rate for Se in the second stage. That is, the reaction pathways of selenide were not constant. In contrast, there are excessive CuxSe phase when temperature was increased to 350 and 550oC. CIAS thin films of different preferred orientations were obtained by varying the heating rates.
URI: http://hdl.handle.net/11455/11309
其他識別: U0005-2307201215290000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2307201215290000
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.