Please use this identifier to cite or link to this item:
標題: 以化學蝕刻剝離法研製薄膜型磷化鋁銦鎵發光二極體及其特性研究
Fabrication and Characterization of Thin-Film AlGaInP LEDs Using a Chemical Lift-Off Technique
作者: 陳峻利
Chen, Chun-Li
關鍵字: 薄膜型發光二極體
Thin-film LEDs
Chemical lift-off
Sacrificial layer
出版社: 材料科學與工程學系所
引用: [1]H. J. Round, "A note on carborundum," Electrical world, vol.49, pp. 309-310, 1907. [2]N. Holonyak Jr. and S. F. Bevacqua, "Coherent (Visible) Light Emission from Ga(As1-xPx) Junctions," Applied Physics Letters, vol. 1, pp. 82-83, 1962. [3]M.G. Craford, "LED''s challenge the incandescents," IEEE circuits and devices Mag., vol. 8, pp. 24-29, 1992. [4]L. W. Cook, M. D. Camras, S. L. Rudaz, and F. M. Steranka, "High efficiency 650 nm aluminum gallium arsenide light emitting diodes," in Proc. 14th Int. Symp. GaAs and Related Compounds, vol. 7, pp. 777-780, 1987. [5]H. Sugawara, M. Ishikawa, and G. Hatakoshi, "High-efficiency InGaAlP/GaAs visible light-emitting diodes," Applied Physics Letters, vol. 58, pp. 1010-1031, 1991. [6]M. G. Craford and V. M. Robbins, "High performance AlGaInP visible light-emitting diodes," Applied Physics Letters, vol. 57, pp. 2937-2939, 1990. [7]R. M. Fletcher, C. P. Kuo, T. D. Osentowski, and V. M. Robbins, "Light-emitting diode with an electrically conductive window," U.S. Patent, 5008718, 1991. [8]A. D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, "High-brightness AlGaInP light emitting diodes," IEEE., vol. 85, pp. 1752-1764, 1997. [9]T. Gessmann and E. F. Schubert, "High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications," J. Appl. Phys., vol. 95, pp. 2203-2216, 2004. [10]Klaus Streubel, Norbert Linder, Ralph Wirth, and Arndt Jaeger, "High brightness AlGaInP light-emitting diodes," IEEE., vol. 8, pp. 321-332, 2002 [11]M. R. Krames, "High power truncated inverted pyramid (AlxGa1-x)0.5In0.5P/GaP light emitting diodes exhibiting >50% external quantum efficiency," Applied Physics Letters, vol. 75, pp. 2365-2367, 1999. [12]K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, and A. S. H. Liao, "Twofold efficiency improvement in high performance AlGalnP lightemitting diodes in the 555-620 nm spectral region using a thick GaP window layer," Applied Physics Letters, vol. 61, pp. 1045-1047, 1992. [13]R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, "AlGaInP/ mirror/Si light-emitting diodes with vertical electrodes by wafer bonding," Applied Physics Letters, vol. 82, pp. 4011-4013, 2003. [14]施敏 原著,張俊彥 譯著,半導體元件物理與製程技術,第三版,高立圖書有限公司,第104-206頁,2000。 [15]D. K. Schroder, "Semiconductor Material and Device Characterization," John Wiley & Sons, Inc., 1998. [16]V. M. Bermudez, "Study of oxygen chemisorption on the. GaN(0001)-(1 21) surface," J. Appl. Phys., vol. 80, pp. 1190-1200, 1996. [17]史光國,半導體發光二極體及固態照明,全華科技圖書股份有限公司,第2-1 - 2-72頁,2005。 [18]Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, "Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods," Applied Physics Letters, vol. 86, pp. 031907-1-031907-3, 2005. [19]Lumileds, "Thermal Management Considerations for Super Flux LEDs," Application Note, pp. 4-7, 2002. [20]S. Todoroki, M. Sawai, and K Aiki, "Temperature distribution along the striped active region in high-power GaAlAs visible lasers," J. Appl. Phys., vol. 58, pp. 1124-1128, 1985. [21]黎家豪,“砷化鎵薄膜太陽能電池與基板再利用技術之研發”,國立中興大學精密工程研究所論文,2011。 [22]R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, "High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating," J. Appl. Phys., vol. 43, pp. 576-578, 2004. [23]陳立俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,“材料電子顯微鏡學”,國家實驗研究院儀器科技研究中心,1990。 [24]高至鈞、汪建民,材料分析,民全書局,第137-140頁,1998。 [25]陳隆建,發光二極體之原理與製程,全華科技圖書股份有限公司,第203頁,2006。 [26]陳俊淇、謝健、林俊宏,“電子束/聚焦離子束雙束系統應用介紹”, 國家奈米元件實驗室,2008。 [27]王漢聰,“金鈹及金鈹/砷化鎵之結晶結構研究”,國立台灣科技大學機械工程系論文,2011。 [28]A. Piotrowska, A. Guivarc''h, and G. Pelous, "Ohmic Contacts to III-V Compound Semiconductors: A Review of Fabrication Techniques," Solid State Electronics, vol. 26, pp. 179-197, 1983. [29]Y. C. Shih, M. Murakami, E.L. Wilkie, and A.C. Callegari, "Effects of interfacial microstructure on uniformity and thermal stability of AuGeNi ohmic contacts to n-type GaAs," J. Appl. Phys., vol. 62, pp. 582-590, 1987. [30]M. S. Islam and P. J. McNally, "A comparative study of Pd/Sn/Au, Au/Ge/Au/Ni/Au, Au-Ge/Ni and Ni/Au-Ge/Ni ohmic contacts to n-GaAs," Microelectron. Eng., vol. 40, pp. 541-545, 1998. [31]S. Tahamtan, "Investigation on the effect of annealing process parameters on AuGeNi ohmic contact to n-GaAs using microstructural characteristics," Microelectron. Eng., vol. 51, pp. 1330-1336, 2011. [32]P. T. J. Gennissen and P. J. French, "Sacrificial oxide etching compatible with aluminum metallization," Proc. 1997 Int. Conf. Solid State Sensors and Actuators, pp. 225-228, 1997.
摘要: 本論文提出一新穎製程,在砷化鎵基板與磷化鋁銦鎵磊晶膜間成長砷化鋁犧牲層,配合化學蝕刻剝離技術,將磷化鋁銦鎵磊晶膜轉移至金屬銅基板上,藉此製程製備薄膜型垂直導通發光二極體,並試著與一般直接成長於砷化鎵基板的傳統垂直導通發光二極體,以及普遍被使用的化學蝕刻法移除砷化鎵基板轉移磊晶膜至銅基板之技術製作的垂直導通發光二極體作光電特性比較。 化學剝離技術法是利用氫氟酸溶液側向蝕刻砷化鋁犧牲層的方式,將發光二極體結構轉移至具有蝕刻道的銅金屬基板上,電鍍法製備之銅基板具有良好導熱及導電係數等特性,適合做為磷化鋁銦鎵發光二極體之轉移基板。圖案化蝕刻道設計搭配氫氟酸與丙酮之混合蝕刻液,可大幅縮短側向蝕刻時間,以單一面積1 mm2的元件為例,僅需約1~1.5小時左右,即可將尺寸大小2 cm x 2 cm磷化鋁銦鎵磊晶膜完整轉移至銅基板上。 在此,傳統基板型發光二極體並未得到良好電性,故不拿來與其他兩製程所製作的發光二極體做特性比較,而獨立檢討其製程失敗原因。當工作電流20 mA注入下,化學蝕刻法與化學蝕刻剝離技術製作的垂直導通發光二極體之操作電壓分別為1.86 V與1.87 V;當大電流350 mA注入下,操作電壓則分別為2.22 V與2.24 V。在-25 V操作電壓下,兩者的漏電流均小於1 mA之標準。當大電流350 mA注入下,化學蝕刻法與化學蝕刻剝離技術製作的垂直導通發光二極體發光強度分別為5477 mcd與5189 mcd;輸出功率部分,分別為49.9 mW與48.2 mW。熱特性方面,紅外線熱影像分析此二種元件晶片表面溫度,化學蝕刻法與化學蝕刻剝離技術製作之垂直導通發光二極體分別為47.5 °C及45.5 °C。在各種光電特性比較後,顯示化學蝕刻剝離技術與普遍被使用的化學蝕刻法製作的垂直導通發光二極體並無較大的差異,由此可知化學蝕刻剝離技術相較於化學蝕刻法亦有相當的製程水準。
This thesis presents a novel process of vertical thin-film LEDs by using a chemical lift-off (CLO) technique to transfer the AlGaInP epilayer from the GaAs substrate to the copper substrate with the AlAs sacrificial layer. Besides, we prepare vertical LEDs with the GaAs substrate (conventional method) and vertical thin-film LEDs with the copper substrate by chemical etching (CE) method for comparison. The chemical lift-off technique, in which a LED device structure is lifted off from a GaAs substrate to a copper substrate by side etching in the hydrofluoric acid solution, is a potential way to obtain high quality device way. A copper substrate by the electroplating technique is high thermal and electric conductive substrate to be a substrate of AlGaInP LED. We lower the lateral etching time by using a hydrofluoric acid mixed acetone solution with a patterned etching path. The release time of the 2 x 2 cm2 AlGaInP wafer with 1mm2 chip sizes is about 1~1.5 hours. Because of conventional LEDs with bad electrical properties, we don’t compare conventional LEDs with CE- and CLO-LEDs in the following sections. The forward voltage (@20 mA) of CE- and CLO-LEDs were 1.86 V and 1.87 V. The forward voltage (@350 mA) of CE- and CLO-LEDs were 2.22 V and 2.24 V, respectively. The leakage currents (@-25 V) of these devices were also smaller than 1 mA., The luminous intensity of CE- and CLO-LEDs were 5477 mcd and 5189 mcd. The output power of CE- and CLO-LEDs were respectively 49.9 mW and 48.2 mW. The surface temperature of CE- and CLO-LEDs were 47.5 °C and 45.5 °C, respectively. It can be found that the electrical and optical properties of CE- and CLO-LEDs are almost the same. It suggests that the CLO technique can not degrade the thin-film LEDs performance.
其他識別: U0005-3108201209093100
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.