Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11317
標題: 以化成處理法在鎂合金壓鑄飛邊廢料表面形成氯離子位於中間層之層狀雙層氫氧化物及此材料吸收水中氟離子之研究
Direct growth of Mg-Al-Cl LDH film on Mg alloy die casting flash scrap by chemical conversion treatment and the application of the material on absorbing fluoride ions in aqueous solution
作者: 徐郁帆
Syu, Yu-Fan
關鍵字: 鎂合金壓鑄飛邊廢料
Mg alloy die casting flash scrap
中間層為氯離子的鎂鋁層狀雙層氫氧化物
化成處理
陰離子交換
氯化鋁
Mg-Al-Cl LDH
chemical conversion treatment
anion-exchangeability
AlCl3
出版社: 材料科學與工程學系所
引用: [1] B.L. Mordike, T. Ebert, Materials Science and Engineering A, 302 (2001) 37-45. [2] A. Munitz, C. Cotler, A. Stern, G. Kohn, Materials Science and Engineering A, 302 (2001) 68-73. [3] M. Gándara, Materiali in tehnologije, 6 (2011) 633-637. [4] F. Wu, S. Zhang, Z. Tao, Materials and Corrosion, 62 (2011) 234-239. [5] H.E. Friedrich, B.L. Mordike, Magnesium Technology - Metallurgy, Design Data, Applications, Springer-Verlag, 2006, pp. 234-253. [6] I.J. Polmear, Light alloys: from traditional alloys to nanocrystals, Butterworth-Heinemann, 2006, p. 254. [7] R.L. Edgar, Magnesium Alloys and their Applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 1-8. [8] S. Goto, Introduction to Magnesium Investing, Magnesium Investing News, 2011. [9] J. Milroy, S. Hinduja, K. Davey, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212 (1998) 197-215. [10] H. Antrekowitsch, G. Hanko, P. Ebner, Magnesium technology, (2002) 43-48. [11] F. Cavani, F. Trifiro, A. Vaccari, Catalysis Today, (1991) 173-301. [12] A.I. Khan, D. O''Hare, Journal of Materials Chemistry, 12 (2002) 3191-3198. [13] S. Miyata, Clays and Clay Minerals, 31 (1983) 305-311. [14] U. Olsbye, D. Akporiaye, E. Rytter, M. Rønnekleiv, E. Tangstad, Applied Catalysis A: General, 224 (2002) 39-49. [15] H.C. Greenwell, P.J. Holliman, W. Jones, B.V. Velasco, Catalysis Today, 114 (2006) 397-402. [16] U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, European Journal of Inorganic Chemistry, (1998) 1439-1446. [17] K. Okamoto, N. Iyi, T. Sasaki, Applied Clay Science, 37 (2007) 23-31. [18] B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, Journal of the American Chemical Society, 124 (2002) 14127-14136. [19] K.Y. Park, J.H. Song, S.H. Lee, H.S. Kim, Environmental Engineering Science, 27 (2010) 805-810. [20] M. Trikeriotis, D.F. Ghanotakis, International Journal of Pharmaceutics, 332 (2007) 176-184. [21] B.M. Choudary, B. Bharathi, C.V. Reddy, M.L. Kantam, K.V. Raghavan, Chemical Communications, (2001) 1736-1737. [22] B.M. Choudary, T. Someshwar, M. Lakshmi Kantam, C. Venkat Reddy, Catalysis Communications, 5 (2004) 215-219. [23] S. Miyata, Clays and Clay Minerals, 23 (1975) 369-375. [24] N. Iyi, T. Matsumoto, Y. Kaneko, K. Kitamura, Chemistry of Materials, 16 (2004) 2926-2932. [25] G. Centi, S. Perathoner, Catalysis Today, 79-80 (2003) 3-13. [26] Z. Lü, F. Zhang, X. Lei, L. Yang, S. Xu, X. Duan, Chemical Engineering Science, 63 (2008) 4055-4062. [27] X. Guo, F. Zhang, S. Xu, Z. Cui, D.G. Evans, X. Duan, Industrial & Engineering Chemistry Research, 48 (2009) 10864-10869. [28] J.K. Lin, C.L. Hsia, J.Y. Uan, Scripta Materialia, 56 (2007) 927-930. [29] X. Guo, F. Zhang, S. Xu, D.G. Evans, X. Duan, Chemical Communications, (2009) 6836-6838. [30] Z.L. Hsieh, M.C. Lin, J.Y. Uan, Journal of Materials Chemistry, 21 (2011) 1880-1889. [31] J.Y. Uan, J.K. Lin, Y.S. Tung, Journal of Materials Chemistry, 20 (2010) 761-766. [32] A. Toyoda, T. Taira, IEEE Transactions on Semiconductor Manufacturing, 13 (2000) 305-309. [33] F. Shen, X. Chen, P. Gao, G. Chen, Chemical Engineering Science, 58 (2003) 987-993. [34] M. Islam, R.K. Patel, Journal of Hazardous Materials, 143 (2007) 303-310. [35] Guidelines for drinking water quality, World Health Organization, 3rd ed., 2004. [36] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, Tex., 1974, pp. 139-145. [37] J.K. Lin, K.L. Jeng, J.Y. Uan, Corrosion Science, 53 (2011) 3832-3839. [38] J. Chen, Y. Song, D. Shan, E.-H. Han, Corrosion Science, 53 (2011) 3281-3288. [39] M. del Arco, S. Gutierrez, C. Martin, V. Rives, Physical Chemistry Chemical Physics, 3 (2001) 119-126. [40] P. Zhang, G. Qian, H. Shi, X. Ruan, J. Yang, R.L. Frost, Journal of Colloid and Interface Science, 365 (2012) 110-116. [41] W. Chen, B. Qu, Chemistry of Materials, 15 (2003) 3208-3213. [42] E. Álvarez-Ayuso, H.W. Nugteren, Water Research, 39 (2005) 2535-2542. [43] F.R. Costa, A. Leuteritz, U. Wagenknecht, D. Jehnichen, L. Häußler, G. Heinrich, Applied Clay Science, 38 (2008) 153-164. [44] F. Millange, R.I. Walton, D. O''Hare, Journal of Materials Chemistry, 10 (2000) 1713-1720. [45] E. Lydersen, B. Salbu, A.B.S. Polèo, I.P. Muniz, Water Resources Research, 27 (1991) 351-357. [46] S. Ram, T.B. Singh, L.C. Pathak, Physica Status Solidi (a), 165 (1998) 151-164. [47] S. Ram, S. Rana, Materials Letters, 42 (2000) 52-60. [48] W. Tongamp, Q. Zhang, F. Saito, Journal of Materials Science, 42 (2007) 9210-9215. [49] N. Viswanathan, S. Meenakshi, Applied Clay Science, 48 (2010) 607-611.
摘要: 本研究利用化成處理的方式,於AM60及AZ91鎂合金壓鑄飛邊廢料表面形成鎂鋁層狀雙層氫氧化物(Mg-Al-Cl LDH)皮膜。此鎂鋁層狀雙層氫氧化物中間層陰離子以氯離子為主。此鎂鋁層狀雙層氫氧化物具有陰離子交換的特性,可用來吸收含有過量氟離子之水溶液。實驗過程中以200毫升,濃度為3.5 wt.%之氯化鈉水溶液(使用鹽酸滴定至pH值為1.5)對鎂合金壓鑄飛邊廢料(AM60、AZ91)進行化成處理三十分鐘,可在其表面產生中間層為氯離子的鎂鋁層狀雙層氫氧化物皮膜。將處理後的試片取1.5克加入100毫升之氟離子水溶液進行氟離子吸收測試六十分鐘,可使溶液中的氟離子濃度明顯下降。實驗結果發現,以AZ91飛邊廢料經由化成處理所得試片吸收效果優於AM60。因AM60與AZ91基材鋁含量的差異導致吸收效果的落差,故藉由於化成處理溶液中添加氯化鋁對AM60壓鑄飛邊廢料進行化成處理,希望可以改善吸收水溶液中氟離子的效果。結果顯示,AM60吸收水溶液中氟離子的效果明顯提升,甚至優於AZ91吸收水溶液中氟離子的效果。此外,在實驗過程中發現加入氯化鋁於溶液中對AM60飛邊廢料進行化成處理時,溶液pH值上升緩慢。因此,必須將化成處理時間增加至兩小時。本研究著重於使無法經濟且有效回收的鎂合金壓鑄飛邊廢料能夠有新的用途。經過此化成處理後的飛邊廢料可以用來吸收含有過量氟離子之水溶液,例如半導體廠所排放之含有高濃度氟離子的廢水。讓傳統工業所產生的廢料,也能夠應用於高科技業。
This work presents a novel method to develop Mg-Al-Cl layered double hydroxide (Mg-Al-Cl LDH) on Mg alloy die casting flash scrap by simply dipping the sample in chemical conversion solution (an aqueous HCl of initial pH 1.5 with 3.5 wt.% NaCl solution) for 30 min at room temperature. The Mg-Al-Cl LDH has anion-exchangeability and can be used to absorb fluoride ions in aqueous solution. By this method, we can directly produce the Cl-intercalated LDH on Mg alloy die casting flash and do not need deintercalation of carbonate ions from CO3-intercalated LDH. Experimentally, the chemical reaction should be sufficiently strong to raise the pH value of the system to ~9 as soon as possible for favoring the LDH formation. The chemical conversion treatment time usually is 30 min. Because of the Al concentration difference between AM60 and AZ91, we try to add different amount of AlCl3 in chemical conversion solution. However, adding 0.22 g AlCl3 in chemical conversion solution cause the pH value to rise slowly. Thus, increasing treatment time to 120 min is necessary as treating AM60 flash scrap in chemical conversion solution containing AlCl3. Using post-treatment samples to absorb fluoride ions for 60 min, the concentration of fluoride ions from 100 ppm fluoride ions aqueous solution (pH 6.0 ± 0.5) is decreased significantly. According to the experimental results, the different effect of absorbing fluoride ions caused by different alloys’ composition (AM60 and AZ91) can improve by adding aluminum ions in the chemical conversion solution. Moreover, increasing treatment time can make good growth of LDH and can also improve the effect of absorbing fluoride ions. The Mg alloy die casting flash scrap after chemical conversion treatment can be used to absorb fluoride ions in aqueous solution such as high concentration of fluoride wastewater generated by the semiconductor manufacturing process, making Mg alloy die casting flash scrap develop a new usage.
URI: http://hdl.handle.net/11455/11317
其他識別: U0005-0708201214462300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201214462300
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.