Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11318
標題: 以原子層沉積法進行氧化鋁薄膜之成長與特性研究
Growth and Characterization of Al2O3 Thin Films Using Atomic Layer Deposition
作者: 賴宜楓
Lai, Yi-Feng
關鍵字: 原子層沉積技術
Atomic layer deposition
氧化鋁
水氣透過率
表面處理
Aluminium oxide
WVTR
surface pretreatment
出版社: 材料科學與工程學系所
引用: [1] T. S. a. M. Antson, "Method for producing compound thin films," 1977. [2] M. Groner, S. George, R. McLean, and P. Carcia, "Gas diffusion barriers on polymers using Al2O3 atomic layer deposition," Applied Physics Letters, vol. 88, pp. 051907-051907-3, 2006. [3] P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, and S. M. George, "Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers," Applied Physics Letters, vol. 89, pp. 031915-3, 2006. [4] E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, "Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers," Applied Physics Letters, vol. 89, pp. 081915-3, 2006. [5] T. Hirvikorpi, M. Vaha-Nissi, T. Mustonen, E. Iiskola, and M. Karppinen, "Atomic layer deposited aluminum oxide barrier coatings for packaging materials," Thin Solid Films, vol. 518, pp. 2654-2658, 2010. [6] P. F. Carcia, R. S. McLean, and M. H. Reilly, "Permeation measurements and modeling of highly defective Al2O3 thin films grown by atomic layer deposition on polymers," Applied Physics Letters, vol. 97, pp. 221901-3, 2010. [7] M. Ritala, M. Leskela, and E. Rauhala, "Atomic layer epitaxy growth of titanium dioxide thin films from titanium ethoxide," Chemistry of Materials, vol. 6, pp. 556-561, 1994. [8] S. Morozov, A. Malkov, and A. Malygin, "Synthesis of porous magnesium oxide by thermal decomposition of basic magnesium carbonate," Russian journal of general chemistry, vol. 73, pp. 37-42, 2003. [9] K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskela, "Atomic layer deposition of hafnium dioxide films from hafnium tetrakis (ethylmethylamide) and water," Chemical Vapor Deposition, vol. 8, pp. 199-204, 2002. [10] H. Siimon and J. Aarik, "Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors," Journal of Physics D: Applied Physics, vol. 30, p. 1725, 1997. [11] R. L. Puurunen, "Growth Per Cycle in Atomic Layer Deposition: Real Application Examplesof a Theoretical Model," Chemical Vapor Deposition, vol. 9, pp. 327-332, 2003. [12] J. S. Becker and R. G. Gordon, "Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis (tert-butylimido) bis (dimethylamido) tungsten and ammonia," Applied Physics Letters, vol. 82, pp. 2239-2241, 2003. [13] M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, "Low-Temperature Al2O3 Atomic Layer Deposition," Chemistry of Materials, vol. 16, pp. 639-645, 2004/02/01 2004. [14] R. S. Bhattacharya, A. Rai, and A. McCormick, "Ion-beam-assisted deposition of Al2O3 thin films," Surface and Coatings Technology, vol. 46, pp. 155-163, 1991. [15] R. O. Ritchie, J. F. Knott, and J. R. Rice, "On the relationship between critical tensile stress and fracture toughness in mild steel," Journal of the Mechanics and Physics of Solids, vol. 21, pp. 395-410, 1973. [16] Y. Widjaja and C. B. Musgrave, "Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition," Applied Physics Letters, vol. 80, p. 3304, 2002. [17] R. L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," Journal of Applied Physics, vol. 97, p. 121301, 2005. [18] C. E. Chryssou and C. W. Pitt, "Al2O3 thin films by plasma-enhanced chemical vapour deposition using trimethyl-amine alane (TMAA) as the Al precursor," Applied Physics a-Materials Science & Processing, vol. 65, pp. 469-475, Oct 1997. [19] W. K. W. Lee, and J. S. J. Van Deventer., "Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates," Langmuir, vol. 19, pp. 8726-8734, 2003. [20] A. Rahtu, T. Alaranta, and M. Ritala, "In situ quartz crystal microbalance and quadrupole mass spectrometry studies of atomic layer deposition of aluminum oxide from trimethylaluminum and water," Langmuir, vol. 17, pp. 6506-6509, 2001. [21] C. Wilson, R. Grubbs, and S. George, "Nucleation and growth during Al2O3 atomic layer deposition on polymers," Chemistry of Materials, vol. 17, pp. 5625-5634, 2005. [22] Y.-C. Kim, H.-H. Park, J. S. Chun, and W.-J. Lee, "Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition," Thin Solid Films, vol. 237, pp. 57-65, 1994. [23] A. E. Braun and R. Gordon, "ALD breaks materials, conformality barriers," Semiconductor international, vol. 24, pp. 52-58, 2001. [24] L. K. Tan, M. A. S. Chong, and H. Gao, "Free-Standing Porous Anodic Alumina Templates for Atomic Layer Deposition of Highly Ordered TiO2 Nanotube Arrays on Various Substrates," The Journal of Physical Chemistry C, vol. 112, pp. 69-73, 2008/01/01 2007. [25] S. H. K. Park, J. Oh, C. S. Hwang, J. I. Lee, Y. S. Yang, and H. Y. Chu "Ultrathin Film Encapsulation of an OLED by ALD," Electrochemical and Solid-State Letters, vol. 8, pp. H21-H23, January 1, 2005 2005. [26] C. A. Wilson, R. K. Grubbs, and S. M. George, "Nucleation and Growth during Al2O3 Atomic Layer Deposition on Polymers," Chemistry of Materials, vol. 17, pp. 5625-5634, 2005/11/01 2005. [27] J. D. Ferguson, A. W. Weimer, and S. M. George, "Atomic Layer Deposition of Al2O3 Films on Polyethylene Particles," Chemistry of Materials, vol. 16, pp. 5602-5609, 2004/12/01 2004. [28] M. Knez, A. Kadri, C. Wege, U. Gosele, H. Jeske, and K. Nielsch, "Atomic Layer Deposition on Biological Macromolecules: Metal Oxide Coating of Tobacco Mosaic Virus and Ferritin," Nano Letters, vol. 6, pp. 1172-1177, 2006/06/01 2006. [29] 吳宜勇,李邦聖,王春青,“單原子層沉積原理及其應用”,電子工業專業用設備,第6期,第6-10頁,2005。 [30] 劉雄英,黃光周,范藝,于繼榮,“原子層沉積技術及應用發展概況”,真空科學與技術學報,第146-153頁,2006。 [31] J. W. Klaus and S. M. George, "Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions," Surface Science, vol. 447, pp. 81-90, Feb 20 2000. [32] H. B. Park, M. Cho, J. Park, S. W. Lee, C. S. Hwang, J. P. Kim, J. H. Lee, N. I. Lee, H. K. Kang, J. C. Lee, and S. J. Oh, "Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant," Journal of Applied Physics, vol. 94, pp. 3641-3647, 2003. [33] Y. Lu, S. Bangsaruntip, X. Wang, L. Zhang, Y. Nishi, and H. Dai, "DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High κ Dielectrics for Nanotube Transistors with 60 mV/Decade Switching," Journal of the American Chemical Society, vol. 128, pp. 3518-3519, 2006/03/01 2006. [34] D. R. G. Mitchell, D. J. Attard, and G. Triani, "Transmission electron microscopy studies of atomic layer deposition TiO2 films grown on silicon," Thin Solid Films, vol. 441, pp. 85-95, 2003. [35] W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition," Applied Physics Letters, vol. 90, pp. 253511-3, 2007. [36] J. S. King, E. Graugnard, and C. J. Summers, "TiO2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition," Advanced Materials, vol. 17, pp. 1010-1013, 2005. [37] M. Copel, M. Gribelyuk, and E. Gusev, "Structure and stability of ultrathin zirconium oxide layers on Si(001)," Applied Physics Letters, vol. 76, pp. 436-438, 2000. [38] S.-i. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, "Laser Damage Properties of Optical Coatings with Nanoscale Layers Grown by Atomic Layer Deposition," Japanese Journal of Applied Physics, vol. 43, pp. 1034-1035, 2004. [39] K.-H. Kim, H.-J. Kim, P. Jang, C. Jung, and K. Seomoon, "Properties of low-temperature passivation of silicon with ALD Al2O3 films and their PV applications," Electronic Materials Letters, vol. 7, pp. 171-174, 2011. [40] M. Leskela, and Mikko Ritala., "Atomic layer deposition (ALD): from precursors to thin film structures.," Thin Solid Films, vol. 409, pp. 138-146, 2002. [41] T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, "Method for performing growth of compound thin films," ed: Google Patents, 1983. [42] "AFM Almanac Imaging Modes," Agilent Technologies. [43] S. Claram, "Comprehensive Metrology Tools for Characterization and Measurements of Ultra-Thick Films, Determination of Optical Properties of Materials," 2005. [44] Mocon, PERMATRAN-W Model 3/61 Operator''s Manual. [45] 鍾明勳,“FT-IR 快速分析鑑定技術儀器及應用介紹”,台灣耶拿儀器有限公司。
摘要: 有機發光二極體為固態光源的一種,因其所製作之顯示器具有自發光、高色彩/對比度及廣視角等優勢,成為未來平面顯示器發展的一個重要領域。但由於有機發光二極體所使用之電極與發光層對水氣敏感,因此具阻水性質之封裝技術成為影響有機發光二極體壽命的重要關鍵。各種阻水封裝技術中,又以於基板上沉積阻隔層以抵抗水氣滲透的技術為市場主流,而目前作為水氣阻障層的材料又以電漿輔助化學氣相沉積法所成長之氧化矽與氮化矽薄膜最為成熟。 本研究以原子層沉積技術,成長氧化鋁薄膜於聚乙醯胺基板,實驗分別探討製程溫度與氣體注入時間對於氧化鋁薄膜特性之影響,並以降低薄膜水氣透過率為目的,進行成膜條件之優化。實驗首先進行原子層沉積技術之製程優化,並測試不同厚度的氧化鋁薄膜之透水性,探討膜厚對應阻水性之相對關係。再透過開發基材表面前處理製程,使氧化鋁薄膜的水氣阻擋能力獲得更進一步的提升。最後,將優化後的氧化鋁薄膜與目前常用之氧化矽(SiO2)與氮化矽(SiNx)薄膜進行比較,探究其阻水性之優劣。 實驗結果顯示,當製程溫度為200℃,前驅物三甲基鋁與水的氣體注入時間分別為0.1秒與0.3秒,並藉由前驅物三甲基鋁與水的輪流曝露作為前處理,是製程的最佳條件。膜厚方面則以20nm之氧化鋁薄膜之水氣阻障效果最佳,可將原本水氣透過率(WVTR)為60 g/m2/day的聚乙醯胺基板降低至0.289 g/m2/day (40℃,濕度90%,測試時間72小時) 的效果。如果相較於本實驗室過去以電漿輔助化學氣相沉積法之結果,例如成長於聚碳酸酯基板(WVTR=30 g/m2/day)之50 nm SiO2阻障層其水氣透過率為1.369 g/m2/day,而50 nm厚之SiNx阻障層其水氣透過率為0.173 g/m2/day,以原子層沉積技術成長之氧化鋁薄膜具有極佳之阻水性質,未來將有機會可以進一步應用於商業有機發光二極體製之封裝製程上。
Organic light-emitting diodes (OLEDs) have been widely used in high-contrast and wide-view-angle flat panel displays. Because OLEDs are extremely sensitive to moisture, the transmission of water vapor in device package becomes an important issue to protect the water-induced degradation. Deposition of the barrier layers, such as SiO2 and SiNx prepared by plasma-enhanced chemical vapor deposition (PECVD) is one of the fundamental methods to resolve this problem. In this thesis, we focus on the optimization of growth parameters of Al2O3 inorganic thin films depositing by atomic layer deposition (ALD), and further applied as barrier to minimizing penetration of moisture. Experimental procedure is carried out by repeating the deposition cycle of trimethylaluminum (Al(CH3)3, TMA) adsorption and oxidation by pure water. At the beginning, we deposited Al2O3 at different temperatures. Pulse time of H2O precursor was tuned to develop an optimal condition for Al2O3 thin film growth. After the optimization of deposition parameters, various thickness of Al2O3 thin films were prepared to discuss the transmission rates of water vapor and transmittance. It is found that the permeation characteristics of Al2O3 could be further improved by introducing the pretreatment step in the initial stage during ALD process. This improvement is mainly due to the interaction enhancement between substrate and precursor during the pretreatment. In addition, the superiority of ALD-deposited Al2O3 thin films is proved by comparing to the PECVD-deposited SiO2 and SiNx barriers. Under optimized deposition conditions, the water vapor transmission rate (WVTR) for polyimide substrate can be reduced from 60 g/m2/day (bare substrate, 40℃ and 100% RH during 72 hours) to 0.289 g/m2/day by coating a 20 nm-thick Al2O3 barrier film. This result is better than the PECVD barrier samples on polycarbonate substrates, e.g., 50 nm-thick SiO2 barrier (WVTR=1.369 g/m2/day), and 50 nm-thick SiNx barrier (WVTR=0.173 g/m2/day). It is a promising result for further application in OLEDs using these high-quality ALD-deposited Al2O3 barrier films.
URI: http://hdl.handle.net/11455/11318
其他識別: U0005-2808201322083900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808201322083900
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.