Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11323
標題: 以射頻反應式濺鍍/電漿輔助化學氣相沉積法製備p型非晶質硼碳薄膜合金及其在太陽能電池之應用
The p-type amorphous boron carbon thin film alloy prepared by radio-frequency reactive sputtering/plasma-enhanced chemical vapor deposition and its applications for solar cells
作者: 陳村松
Chen, Tsuen-Sung
關鍵字: 碳基
Carbon-based

薄膜合金
反應式濺鍍
電漿輔助化學氣相沉積法
填充因子
太陽能電池
Boron
Thin film alloys
Reactive sputtering
Plasma-enhanced chemical vapor deposition(PECVD)
Fill factor
Solar cells
出版社: 材料科學與工程學系所
引用: [1] J. Robertson. Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports, 2002; 37 (4–6): 129–281. [2] H. Zhu, J. Wei, K. Wang, D. Wu. Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells, 2009; 93 (9): 1461–70. [3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004; 306 (5696): 666–9. [4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005; 438 (7065): 197–200. [5] A.K. Geim, K.S. Novoselov. The rise of graphene. Nature Materials, 2007; 6 (3): 183–91. [6] H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, R.E. Smalley. C60: Buckminsterfullerene. Nature, 1985; 318 (6042): 162–3. [7] A. Hirsch, M. Brettreich. Fullerenes: Chemistry and Reactions. Weinheim, Germany: Wiley-VCH; 2005. [8] S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991; 354 (6348): 56–8. [9] R.H. Baughman, A.A. Zakhidov, W.A.d. Heer. Carbon nanotubes—The route toward applications. Science, 2002; 297 (5582): 787–92. [10] A. Loiseau, P. Launois-Bernede, P. Petit, S. Roche, J.-P. Salvetat. Understanding Carbon Nanotubes: From Basics to Applications. Berlin, Germany: Springer; 2006. [11] Y. Kimura, T. Sato, C. Kaito. Production and structural characterization of carbon soot with narrow UV absorption feature. Carbon, 2004; 42 (1): 33–8. [12] J.P. Tua, L.P. Zhua, K. Houa, S.Y. Guo. Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon, 2003; 41 (6): 1257–63. [13] K.M. Krishna, T. Soga, K. Mukhopadhyay, M. Sharon, M. Umeno. Photovoltaic solar cell from camphoric carbon: A natural source. Solar Energy Materials and Solar Cells, 1997; 48 (1–4): 25–33. [14] J.J. Zheng, X. Zhao, Y. Zhao, X. Gao. Two-dimensional carbon compounds derived from graphyne with chemical properties superior to those of graphene. Scientific Reports, 2013; 3 (1271): 1–7. [15] T.S. Chen, S.T. Shiue. Hydrogenated amorphous carbon films used for carbon-sealed double-coated optical fibers. Thin Solid Films, 2012; 520 (22): 6765–73. [16] W.S. Choi, K. Kim, J. Yi, B. Hong. Diamond-like carbon protective anti-reflection coating for Si solar cell. Materials Letters, 2008; 62 (4–5): 577–80. [17] M.H. Oliveira Jr., D.S. Silva, A.D.S. Côrtes, M.A.B. Namani, F.C. Marques. Diamond like carbon used as antireflective coating on crystalline silicon solar cells. Diamond and Related Materials, 2009; 18 (5–8): 1028–30. [18] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998; 393 (6683): 346–9. [19] D.A. Stewart, F. Léonard. Energy conversion efficiency in nanotube optoelectronics. Nano Letters, 2005; 5 (2): 219–22. [20] W. Jacob, W. Möller. On the structure of thin hydrocarbon films. Applied Physics Letters, 1993; 63 (13): 1771–3. [21] J. Robertson. Gap states in diamond-like amorphous carbon. Philosophical Magazine Part B, 1997; 76 (3): 335–50. [22] C.W. Chen, J. Robertson. Nature of disorder and localization in amorphous carbon. Journal of Non-Crystalline Solids, 1998; 227–230 (1): 602–6. [23] J. Robertson. Hard amorphous (diamond-like) carbons. Progress in Solid State Chemistry, 1991; 21 (4): 199–333. [24] J. Robertson, E.P. O''Reilly. Electronic and atomic structure of amorphous carbon. Physical Review B: Condensed Matter and Materials Physics, 1987; 35 (6): 2946–57. [25] J. Robertson. Structural models of a-C and a-C:H. Diamond and Related Materials, 1995; 4 (4): 297–301. [26] Rusli, J. Robertson, G.A.J. Amaratunga. Photoluminescence behavior of hydrogenated amorphous carbon. Journal of Applied Physics, 1996; 80 (5): 2998–3003. [27] J. Robertson. Amorphous carbon. Advances in Physics, 1986; 35 (4): 317–74. [28] C. De Martino, F. Demichelis, A. Tagliaferro. Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis. Diamond and Related Materials, 1995; 4 (10): 1210–5. [29] J.J. Cuomo, J.P. Doyle, J. Bruley, J.C. Liu. Sputter deposition of dense diamondlike carbon films at low temperature. Applied Physics Letters, 1991; 58 (5): 466–8. [30] J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, R. Brenn. Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. Journal of Applied Physics, 1996; 79 (3): 1416–22. [31] B. Druz, S. DiStefano, A. Hayes, E. Ostan, K. Williams, L. Wang. Ion beam deposition of diamond-like carbon from an r.f. inductively coupled CH4-plasma source. Surface and Coatings Technology, 1996; 86–87 (2): 708–14. [32] R. Gago, O. Sánchez-Garrido, A. Climent-Font, J.M. Albella, E. Román, J. Raisanen, E. Raühala. Effect of the substrate temperature on the deposition of hydrogenated amorphous carbon by PACVD at 35 kHz. Thin Solid Films, 1999; 338 (1–2): 88–92. [33] Y. Hayashi, K. Hagimoto, H. Ebisu, M.K. Kalaga, T. Soga, M. Umeno, T. Jimbo. Effect of radio frequency power on the properties of hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics, 2000; 39 (Part 1, 7A): 4088–93. [34] H.C. Lin, S.T. Shiue, Y.M. Chou, H.Y. Lin, T.C. Wu. Effect of substrate temperature on the properties of carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition. Thin Solid Films, 2007; 516 (2–4): 114–8. [35] S.S. Chen, S.T. Shiue, K.J. Cheng, P.Y. Chen, H.Y. Lin. Minimization of conical particles in carbon coatings of optical fibers prepared by thermal chemical vapor deposition. Optical Engineering, 2008; 47 (4): 1–5[045005]. [36] E. Tomasella, C. Meunier, S. Mikhailov. a-C:H thin films deposited by radio-frequency plasma: influence of gas composition on structure, optical properties and stress levels. Surface and Coatings Technology, 2001; 141 (2–3): 286–96. [37] N.K. Cuong, M. Tahara, N. Yamauchi, T. Sone. Diamond-like carbon films deposited on polymers by plasma-enhanced chemical vapor deposition. Surface and Coatings Technology, 2003; 174–175: 1024–8. [38] Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, I. Lin. Effects of hydrogen additive on microwave plasma CVD of nanocrystalline diamond in mixtures of argon and methane. Diamond and Related Materials, 2004; 13 (4–8): 671–8. [39] S.R. Jian, T.H. Fang, D.S. Chuu. Nanoindentation investigation of amorphous hydrogenated carbon thin films deposited by ECR-MPCVD. Journal of Non-Crystalline Solids, 2004; 333 (3): 291–5. [40] G. Fanchini, A. Tagliaferro, B. Popescu, E.A. Davis. Paramagnetic properties and hydrogen-related structural relaxation effects in magnetron-sputtered a-C:H thin films. Journal of Non-Crystalline Solids, 2002; 299–302 (2): 846–51. [41] N.D. Baydoğan. Evaluation of optical properties of the amorphous carbon film on fused silica. Materials Science and Engineering: B: Advanced Functional Solid-State Materials, 2004; 107 (1): 70–7. [42] M. Weiler, S. Sattel, T. Giessen, K. Jung, H. Ehrhardt, V.S. Veerasamy, J. Robertson. Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Physical Review B: Condensed Matter and Materials Physics, 1996; 53 (3): 1594–608. [43] I. Langmuir. The interaction of electron and positive ion space charges in cathode sheaths. Physical Review, 1929; 33 (6): 954–89. [44] A. Grill. Cold Plasma in Materials Fabrication: From Fundamentals to Applications. New York, USA: IEEE Press; 1994. [45] Z. Sun, C.H. Lin, Y.L. Lee, J.R. Shi, B.K. Tay, X. Shi. Properties and structures of diamond-like carbon film deposited using He, Ne, Ar/methane mixture by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2000; 87 (11): 8122–31. [46] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, F.L. Freire Jr. Amorphous hydrogenated carbon films deposited by PECVD: influence of the substrate temperature on film growth and microstructure. Journal of Non-Crystalline Solids, 2004; 338–340: 503–8. [47] G. Capote, F.L. Freire, L.G. Jacobsohn, G. Mariotto. Amorphous hydrogenated carbon films deposited by PECVD in methane atmospheres highly diluted in argon: effect of the substrate temperature. Diamond and Related Materials, 2004; 13 (4–8): 1454–8. [48] H. Tahara, K.I. Minami, A. Murai, T. Yasui, T. Yoshikawa. Diagnostic experiment and kinetic model analysis of microwave CH4/H2 plasmas for deposition of diamondlike carbon films. Japanese Journal of Applied Physics, 1995; 34 (Part 1, 4A): 1972–9. [49] F.M. Wang, M.W. Chen, Q.B. Lai. Metallic contacts to nitrogen and boron doped diamond-like carbon films. Thin Solid Films, 2010; 518 (12): 3332–6. [50] Y. Hayashi, S. Ishikawa, T. Soga, M. Umeno, T. Jimbo. Photovoltaic characteristics of boron-doped hydrogenated amorphous carbon on n-Si substrate prepared by r.f. plasma-enhanced CVD using trimethylboron. Diamond and Related Materials, 2003; 12 (3–7): 687–90. [51] T. Soga, T. Kokubu, Y. Hayashi, T. Jimbo. Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition. Thin Solid Films, 2005; 482 (1–2): 86–9. [52] R.S. Chu. Fabrication and Characteristics of n-type and p-type Carbon Thin Films [Ph.D. Thesis]. Taiwan: Department of Materials Science and Engineering, National Chung Hsing University; 2009. [53] M.A. Green. Solar Cells: Operating Principles, Technology, and System Applications. New Jersey, USA: Prentice-Hall; 1982. [54] D.M. Bagnall, M. Boreland. Photovoltaic technologies. Energy Policy, 2008; 36 (12): 4390–6. [55] J. Nelson. The Physics of Solar Cells. London, UK: Imperial College Press; 2003. [56] J. Yang, A. Banerjee, S. Guha. Amorphous silicon based photovoltaics—from earth to the “final frontier”. Solar Energy Materials and Solar Cells, 2003; 78 (1–4): 597–612. [57] K.M. Krishna, T. Soga, T. Jimbo, M. Umeno. A phosphorus doped (n-type) carbon/boron doped (p-type) silicon photovoltaic solar cell from a natural source. Carbon, 1999; 37 (3): 531–3. [58] M. Rusop, X.M. Tian, S.M. Mominuzzaman, T. Soga, T. Jimbo, M. Umeno. Photoelectrical properties of pulsed laser deposited boron doped p-carbon/n-silicon and phosphorus doped n-carbon/p-silicon heterojunction solar cells. Solar Energy, 2005; 78 (3): 406–15. [59] R.S. Chu, S.T. Shiue. Effects of radio frequency powers on the characteristics of a-C:N/p-Si photovoltaic solar cells prepared by plasma enhanced chemical vapor deposition. Surface and Coatings Technology, 2008; 202 (22–23): 5364–6. [60] Z.Q. Ma, B.X. Liu. Boron-doped diamond-like amorphous carbon as photovoltaic films in solar cell. Solar Energy Materials and Solar Cells, 2001; 69 (4): 339–44. [61] J.C. Pu, S.F. Wang, C.L. Lin, J.C. Sung. Characterization of boron-doped diamond-like carbon prepared by radio frequency sputtering. Thin Solid Films, 2010; 519 (1): 521–6. [62] C. Wan, X. Zhang, X. Zhang, X. Gao, X. Tan. Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates. Applied Physics Letters, 2009; 95 (2): 1–3[022105]. [63] M. Ma, Q. Xue, H. Chen, X. Zhou, D. Xia, C. Lv, J. Xie. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2/Si. Applied Physics Letters, 2010; 97 (6): 1–3[061902]. [64] C. Wan, X. Zhang, J. Vanacken, X. Gao, X. Zhang, L. Wu, X. Tan, H. Lin, V.V. Moshchalkov, J. Yuan. Electro- and magneto-transport properties of amorphous carbon films doped with iron. Diamond and Related Materials, 2011; 20 (1): 26–30. [65] T.S. Chen, S.E. Chiou, S.T. Shiue. The effect of different radio-frequency powers on characteristics of amorphous boron carbon thin film alloys prepared by reactive radio-frequency plasma enhanced chemical vapor deposition. Thin Solid Films, 2013; 528: 86–92. [66] D. Zhang, D.M. Davalle, W.L. O''Brien, D.N. McIlroy. The chemical composition of as-grown and surface treated amorphous boron carbon thin films by means of NEXAFS and XPS. Surface Science, 2000; 461 (1–3): 16–22. [67] J. Potočnik. Renewable energy sources and the realities of setting an energy agenda. Science, 2007; 315 (5813): 810–1. [68] A.E. Becquerel. Mémoire sur les effets électriques produits sous l''influence des rayons solaires. Comptes Rendus de L''Academie des Sciences (English: Proceedings of the Academy of Sciences), 1839; 9: 561–7. [69] D.M. Chapin, C.S. Fuller, G.L. Pearson. A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954; 25 (5): 676–7. [70] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, W.I. Milne. Photoconductivity of nitrogen-modified hydrogenated tetrahedral amorphous carbon. Journal of Applied Physics, 2000; 87 (2): 789–94. [71] V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, D.R. McKenzie. n-Type doping of highly tetrahedral diamond-like amorphous carbon. Journal of Physics: Condensed Matter, 1993; 5 (13): L169–L74. [72] G.A.J. Amaratunga, D.E. Segal, D.R. McKenzie. Amorphous diamondSi semiconductor heterojunctions. Applied Physics Letters, 1991; 59 (1): 69–71. [73] H.A. Yu, Y. Kaneko, S. Yoshimura, S. Otani. Photovoltaic cell of carbonaceous film/n-Type silicon. Applied Physics Letters, 1996; 68 (4): 547–9. [74] H.A. Yu, T. Kaneko, S. Yoshimura, Y. Suhng, S. Otani, Y. Sasaki. The spectrophotovoltaic characteristics of a carbonaceous film/ntype silicon (C/n-Si) photovoltaic cell. Applied Physics Letters, 1996; 69 (26): 4078–80. [75] H.A. Yu, T. Kaneko, S. Otani, Y. Sasaki, S. Yoshimura. A carbonaceous thin film made by CVD and its application for a carbon/n-type silicon (C/n-Si) photovoltaic cell. Carbon, 1998; 36 (1–2): 137–43. [76] N. Konofaos, E. Evangelou, C.B. Thomas. Device characterization for amorphous diamond-like carbon–silicon heterojunctions. Journal of Applied Physics, 1998; 84 (8): 4634–6. [77] L.K. Cheah, X. Shi, E. Liu, J.R. Shi. Nitrogenated tetrahedral amorphous carbon films prepared by ion-beam-assisted filtered cathodic vacuum arc technique for solar cells application. Applied Physics Letters, 1998; 73 (17): 2473–5. [78] C.H. Lee, K.S. Lim. Boron-doped amorphous diamondlike carbon as a new p-type window material in amorphous silicon p–i–n solar cells. Applied Physics Letters, 1998; 72 (1): 106–8. [79] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, T. Jimbo. Photovoltaic and spectral photoresponse characteristics of n-C/p-C solar cell on a p-silicon substrate. Applied Physics Letters, 2000; 77 (10): 1472–4. [80] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno. Solar cells based on carbon thin films. Solar Energy Materials and Solar Cells, 2001; 65 (1–4): 163–74. [81] N.A. Hastas, C.A. Dimitriadis, D.H. Tassis, S. Logothetidis. Electrical characterization of nanocrystalline carbon–silicon heterojunctions. Applied Physics Letters, 2001; 79 (5): 638–40. [82] K.L. Narayanan, O. Goetzberger, A. Khan, N. Kojima, M. Yamaguchi. Boron ion implantation e!ects in C60 films. Solar Energy Materials and Solar Cells, 2001; 65 (1–4): 29–35. [83] X.M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, M. Umeno. A photovoltaic cell from p-type boron-doped amorphous carbon film. Solar Energy Materials and Solar Cells, 2003; 77 (1): 105–12. [84] X.M. Tian, T. Soga, T. Jimbo, M. Umeno. The a-C:H/p-Si solar cell deposited by pulsed laser deposition. Journal of Non-Crystalline Solids, 2004; 336 (1): 32–6. [85] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, M. Umeno. Nitrogen doped n-type amorphous carbon films obtained by pulsed laser deposition with a natural camphor source target for solar cell applications. Journal of Physics: Condensed Matter, 2005; 17 (12): 1929–46. [86] A.M.M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, M. Umeno. Photovoltaic characteristics of nitrogen-doped amorphous carbon thin-films grown on quartz and flexible plastic substrates by microwave surface wave plasma CVD. Diamond and Related Materials, 2005; 14 (3–7): 1084–8. [87] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, M. Umeno. Photovoltaic properties of n-C:P/p-Si cells deposited by XeCl eximer laser using graphite target. Solar Energy Materials and Solar Cells, 2006; 90 (18–19): 3205–13. [88] S. Adhikari, H.R. Aryal, D.C. Ghimire, A.M.M. Omer, S. Adhikary, H. Uchida, M. Umeno. Optoelectronic properties of nitrogenated amorphous carbon films synthesized by microwave surface wave plasma chemical vapor deposition system. Diamond and Related Materials, 2006; 15 (11–12): 1894–7. [89] J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng, B.S. Wang, S.J. Mu, D.W. Cao. Photovoltaic characteristics of amorphous silicon solar cells using boron doped tetrahedral amorphous carbon films as p-type window materials. Applied Physics Letters, 2007; 90 (8): 1–3[083508]. [90] L. Hao, Q. Xue, X. Gao, Q. Li, Q. Zheng, K. Yan. Abnormal I–V characteristics and metal–insulator transition of Fe-doped amorphous carbon/silicon p–n junction. Journal of Applied Physics, 2007; 101 (5): 1–4[053718]. [91] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno. Solar cells based on carbon thin films. Solar Energy Materials and Solar Cells, 2001; 65 (1–4): 163–70. [92] S.M. Sze. Physics of Semiconductor Devices, 2nd ed. New York, USA: Wiley; 1981. [93] P. Bhattacharya. Semiconductor Optoelectronic Devices. New Jersey, USA: Prentice-Hall; 1994. [94] B.G. Streetman, S. Banerjee. Solid State Electronic Devices, 5th ed. New Jersey, USA: Prentice-Hall; 2000. [95] P. Würfel. Physics of Solar Cells: From Principles to New Concepts. Weinheim, Germany: Wiley-VCH; 2005. [96] S.S. Li. Semiconductor Physical Electronics, 2nd ed. New York, USA: Springer; 2006. [97] S.N. Das, A.K. Pal. Properties of a nanocrystalline GaN p–n homojunction prepared by a high pressure sputtering technique. Semiconductor Science and Technology, 2006; 21 (12): 1557–62. [98] K.W.R. Gilkes, S. Prawer, K.W. Nugent, J. Robertson, H.S. Sands, Y. Lifshitz, X. Shi. Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy Journal of Applied Physics, 2000; 87 (10): 7283–9. [99] A.C. Ferrari. Determination of bonding in diamond-like carbon by Raman spectroscopy. Diamond and Related Materials, 2002; 11 (3–6): 1053–61. [100] A.C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B: Condensed Matter and Materials Physics, 2000; 61 (20): 14095–107. [101] G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, W. Moller. Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study. Physical Review B: Condensed Matter and Materials Physics, 2006; 73 (12): 1–13[125427]. [102] Y. Kawashima, G. Katagiri. Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Physical Review B: Condensed Matter and Materials Physics, 1995; 52 (14): 10053–9. [103] C. Thomsen, S. Reich. Double resonant Raman scattering in graphite. Physical Review Letters, 2000; 85 (24): 5214–7. [104] L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio. Influence of the atomic structure on the Raman spectra of graphite edges. Physical Review Letters, 2004; 93 (24): 1–4[247401]. [105] B.D. Cullity, S.R. Stock. Elements of X-ray Diffraction, 3rd ed. New Jersey, USA: Prentice-Hall; 2001. [106] J. Tauc, R. Grigorovici, A. Vancu. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B: Basic Solid State Physics, 1966; 15 (2): 627–37. [107] J. Tauc. Amorphous and liquid semiconductors. London, UK: Plenum Press; 1974. [108] A. Foulain. Annealing effects on optical and photoluminescence properties of a-C:H films. Journal of Physics D: Applied Physics, 2003; 36 (4): 394–8. [109] L.B. Valdes. Resistivity measurements on germanium for transistors. Proceedings of The IRE, 1954; 42 (2): 420–7. [110] L.J. Van der Pauw. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports, 1958; 13 (1): 1–9. [111] H.C. Hsueh, H.C. Li, D. Chiang, S. Lee. Effects of ammonia/methane mixtures on characteristics of plasma enhanced chemical vapor deposition n-type carbon films. Journal of The Electrochemical Society, 2012; 159 (2): D77–D83. [112] A. Granier, M. Vervloet, K. Aumaille, C. Vallée. Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition. Plasma Sources Science and Technology, 2003; 12 (1): 89–96. [113] L. Wójcik, A. Markowski. Mass spectrometric study of ion/molecule reaction in methane and ammonia mixtures. Vacuum, 2005; 78 (2–4): 235–40. [114] M. Rayar, P. Supiot, P. Veis, A. Gicquel. Optical emission study of a doped diamond deposition process by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2008; 104 (3): 1–10[033304]. [115] H.C. Lin, S.T. Shiue, Y.M. Chou. Effects of radio-frequency powers on the properties of carbon coatings on optical fibers prepared by plasma enhanced chemical vapor deposition. Surface and Coatings Technology, 2008; 202 (22–23): 5360–3. [116] Y. Liu, L. Zhang, L. Cheng, W. Yang, Y. Xu, Q. Zeng. Effect of C/B ratio in reactants on low-pressure CVD boron-doped carbon deposited from a BCl3–C3H6–H2 mixture. Journal of Coatings Technology and Research, 2009; 6 (4): 509–15. [117] T. Heitz, B. Drévillon, C. Godet, J.E. Bourée. Quantitative study of C–H bonding in polymerlike amorphous carbon films using in situ infrared ellipsometry. Physical Review B: Condensed Matter and Materials Physics, 1998; 58 (20): 13957–73. [118] C.Y. Lin, L.H. Lai, Y.X. Liu, S.T. Shiue, H.Y. Lin. Effects of ammonia addition on thermal chemical vapor deposition rates and microstructures of carbon films. Journal of The Electrochemical Society, 2011; 158 (7): D445–D51. [119] G.E. Mullenberg. Handbook of X-ray Photoelectron Spectroscopy. Minnesota, USA: Perkin Elmer Corporation; 1979. [120] J. Hackley, D. Ali, J. DiPasquale, J.D. Demaree, C.J.K. Richardson. Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Applied Physics Letters, 2009; 95 (13): 1–3[133114]. [121] T. Shirasaki, A. Derré, M. Ménétrier, A. Tressaud, S. Flandrois. Synthesis and characterization of boron-substituted carbons. Carbon, 2000; 38 (10): 1461–7. [122] S. Adhikari, D.C. Ghimire, H.R. Aryal, S. Adhikary, H. Uchida, M. Umeno. Boron-doped hydrogenated amorphous carbon films grown by surface-wave mode microwave plasma chemical vapor deposition. Diamond and Related Materials, 2006; 15 (11–12): 1909–12. [123] J.F. Yu, T.S. Chen, H.C. Lin, S.T. Shiue. The effect of rapid thermal annealing on characteristics of carbon coatings on optical fibers. Physica Status Solidi A: Applications and Materials Science, 2010; 207 (2): 379–85. [124] D.P. Norton, M. Ivill, Y. Li, Y.W. Kwon, J.M. Erie, H.S. Kim, K. Ip, S.J. Pearton, Y.W. Heo, S. Kim, B.S. Kang, F. Ren, A.F. Hebard, J. Kelly. Charge carrier and spin doping in ZnO thin films. Thin Solid Films, 2006; 496 (1): 160–8. [125] M. Lejeune, O. Durand-Drouhin, S. Charvet, A. Grosman, C. Ortega, M. Benlahsen. Correlation between plasma parameters, microstructure and optical properties of sputtering magnetron CNx films. Thin Solid Films, 2003; 444 (1–2): 1–8. [126] O. Durand-Drouhin, M. Benlahsen, M. Clin, K. Zellama. Atomic rearrangement of sputtered amorphous carbon nitride thin films during growth. Diamond and Related Materials, 2004; 13 (10): 1854–8. [127] M. Lejeune, O. Durand-Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, M. Benlahsen. Optical investigations and Raman scattering characterisation of carbon bonding in hard amorphous hydrogenated carbon films. Thin Solid Films, 2001; 389 (1–2): 233–8. [128] H.C. Lin, S.T. Shiue, Y.H. Cheng, T.J. Yang, T.C. Wu, H.Y. Lin. Characteristics of carbon coatings on optical fibers prepared by plasma enhanced chemical vapor deposition using different argon/methane ratios. Carbon, 2007; 45 (10): 2004–10. [129] S.S. Chen, S.T. Shiue, W.C. Tang, H.Y. Lin. Effects of annealing on the properties of hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method. Optical Engineering, 2007; 46 (3): 1–6[035008]. [130] R.O. Dillon, J.A. Woollam, V. Katkanant. Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Physical Review B: Condensed Matter and Materials Physics, 1984; 29 (6): 3482–9. [131] S. Kumar. Unhydrogenated diamond-like carbon films prepared by dc plasma chemical vapor deposition at room temperature. Applied Physics Letters, 1991; 58 (17): 1836–8. [132] N.M.J. Conway, A. Ilie, J. Robertson, W.I. Milne, A. Tagliaferro. Reduction in defect density by annealing in hydrogenated tetrahedral amorphous carbon. Applied Physics Letters, 1998; 73 (17): 2456–8. [133] Y. Bounouh, M.L. Thèye, A. Dehbi-Alaoui, A. Matthews, J.P. Stoquert. Influence of annealing on the hydrogen bonding and the microstructure of diamondlike and polymerlike hydrogenated amorphous carbon films. Physical Review B: Condensed Matter and Materials Physics, 1995; 51 (15): 9597–605. [134] Z.L. Akkerman, H. Efstathiadis, F.W. Smith. Thermal stability of diamondlike carbon films. Journal of Applied Physics, 1996; 80 (5): 3068–75. [135] Q. Zhang, S.F. Yoon, Rusli, H. Yang, J. Ahn. Influence of oxygen on the thermal stability of amorphous hydrogenated carbon films. Journal of Applied Physics, 1998; 83 (3): 1349–53. [136] R. Wächter, A. Cordery. Effects of post-deposition annealing on different DLC films. Diamond and Related Materials, 1999; 8 (2–5): 504–9. [137] M. Clin, M. Benlahsen, A. Zeinert, K. Zellama, C. Naud. Effect of annealing on the structural and electrical properties of d.c. multipolar plasma deposited a-C:H films. Thin Solid Films, 2000; 372 (1–2): 60–9. [138] M. Benlahsen, B. Racine, M. Clin, K. Zellama. Comparative study of the effect of thermal annealing on the hydrogen stability and the stress in a-C:H films deposited by electron cyclotron resonance glow discharge and direct current multipolar plasma methods. Journal of Non-Crystalline Solids, 2000; 266–269 (2): 783–7. [139] M. Benlahsen, B. Racine, K. Zellama, G. Turban. On the hydrogen incorporation, intrinsic stress and thermal stability of hydrogenated amorphous carbon films deposited from an electron cyclotron resonance plasma. Journal of Non-Crystalline Solids, 2001; 283 (1–3): 47–55. [140] S. Hasegawa, S. Yazaki, T. Shimizu. Effects of annealing on gap states in amorphous Si films. Solid State Communications, 1978; 26 (7): 407–10. [141] M.F. Mott, E.A. Davis. Electronic processes in non-crystalline materials. Oxford, UK: Clarendon Press; 1971. [142] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada. Growth of native oxide on a silicon surface. Journal of Applied Physics, 1990; 68 (3): 1272–81. [143] T. Cui, R. Lv, Z.H. Huang, H. Zhu, J. Zhang, Z. Li, Y. Jia, F. Kang, K. Wang, D. Wu. Synthesis of nitrogen-doped carbon thin films and their applications in solar cells. Carbon, 2011; 49 (15): 5022–8. [144] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop. Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications, 2012; 20 (5): 606–14. [145] L.A. Kosyachenko. Solar Cells – Silicon Wafer-Based Technologies. Rijeka, Croatia: InTech; 2011. [146] S. Mangal, P. Banerji. GaAs solar cell: Effect of p-layer thickness on device parameter. International Conference on Nanoscience, Technology and Societal Implications (NSTSI); Bhubaneswar, India: IEEE; 2011. pp. 1–3. [147] M. Saad, A. Kassis. Analysis of illumination-intensity-dependent j–V characteristics of ZnO/CdS/CuGaSe2 single crystal solar cells. Solar Energy Materials and Solar Cells, 2003; 77 (4): 415–22. [148] B. Pradhan, S.K. Batabyal, A.J. Pal. Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Applied Physics Letters, 2006; 88 (9): 1–3[093106]. [149] Z. Li, V.P. Kunets, V. Saini, Y. Xu, E. Dervishi, G.J. Salamo, A.R. Biris, A.S. Biris. Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano, 2009; 3 (6): 1407–14. [150] S.J. Fonash. The role of the interfacial layer in metal–semiconductor solar cells. Journal of Applied Physics, 1975; 46 (3): 1286–9. [151] D.L. Pulfrey. MIS solar cells: A review. IEEE Transactions on Electron Devices, 1978; 25 (11): 1308–17. [152] R.L. Anderson. Photocurrent suppression in heterojunction solar cells. Applied Physics Letters, 1975; 27 (12): 691–3. [153] S.R. Vishwakarma, Rahmatullah, H.C. Prasad. Fabrication of SnO2:As/SiO2/n-Si (textured) (semiconductor/insulator/semiconductor) solar cells by chemical vapor deposition. Journal of Applied Physics, 1991; 70 (12): 7474–7. [154] S.R. Vishwakarma, Rahmatullah, H.C. Prasad. Low cost SnO2:P/SiO2/n-Si (textured) heterojunction solar cells. Journal of Physics D: Applied Physics, 1993; 26 (6): 959–62. [155] H.A. Yu, T. Kaneko, S. Yoshimura, Y. Suhng, Y. Sasaki, S. Otani. The junction characteristics of carbonaceous film/n-type silicon (C/n-Si) layer photovoltaic cell. Applied Physics Letters, 1996; 69 (20): 3042–4. [156] W. Shockley, W.T. Read Jr. Statistics of the recombinations of holes and electrons. Physical Review, 1952; 87 (5): 835–42. [157] R.N. Hall. Electron–hole recombination in germanium. Physical Review, 1952; 87 (2): 387. [158] D. Macdonald, A. Cuevas. Reduced fill factors in multicrystalline silicon solar cells due to injection-level dependent bulk recombination lifetimes. Progress in Photovoltaics: Research and Applications, 2000; 8 (4): 363–75. [159] J. Shewchun, J. Dubow, A. Myszkowski, R. Singh. The operation of the semiconductor–insulator–semiconductor (SIS) solar cell: Theory. Journal of Applied Physics, 1978; 49 (2): 855–64. [160] M. Spitzer, J. Shewchun, D. Burk. The operation of the semiconductor–insulator–semiconductor solar cell: Barrier height lowering through interface states. Journal of Applied Physics, 1980; 51 (12): 6399–404.
摘要:   本論文主要是研究以射頻反應式濺鍍/電漿輔助化學氣相沉積法製備p型非晶質硼碳(a-BC)薄膜合金及其在太陽能電池之應用。製程條件為不同射頻功率、固定623 K退火溫度下之不同射頻功率與退火溫度。射頻反應式濺鍍/電漿輔助化學氣相沉積法是結合射頻反應式濺鍍法與射頻電漿輔助化學氣相沉積法而成,同時具備無危險性之摻雜硼的方法和化學氣相沉積法之優點。此外,將p型非晶質硼碳薄膜合金沉積在n型矽(n-Si)基材上製備成光伏元件及其在太陽能電池之應用也在本論文中討論。   當在固定100 nm的薄膜厚度下,改變不同的射頻功率,其實驗結果指出:當射頻功率由100 W增加至500 W,非晶質硼碳薄膜合金的沉積速率受到B/C比例增加的影響,些微地由68.4 nm/min減少至60.0 nm/min,而其B/C比例由0.0031增加至1.03。當射頻功率為300 W時,非晶質硼碳薄膜合金具有最高的石墨化程度及sp2碳鍵結(其ID/IG值為0.80),所以具有最低1.83 eV的光學能隙值(Eg)與2.16×104 Ω•cm的電阻率。此外,所有的非晶質硼碳薄膜合金皆具p型半導體特性。當射頻功率為300 W時,a-BC/n-Si二極體具有最低279 Ω的串聯電阻與4.90的理想因子值。另一方面,非晶質硼碳薄膜合金的楊氏模數E和硬度H值會受到sp2碳含量的影響。因此,使用射頻反應式濺鍍/電漿輔助化學氣相沉積法透過控制射頻功率之沉積參數,預期能對非晶質硼碳薄膜合金的結構及特性進行改質。   當在固定623 K的退火溫度與30 nm的薄膜厚度下,改變射頻功率從100至500 W,其實驗結果亦顯示:非晶質硼碳薄膜合金在300 W的射頻功率時,具有最大的ID/IG值為1.49。因此,可以預期在射頻功率為300 W製備的非晶質硼碳薄膜合金具有最大的石墨化程度與sp2碳鍵結。   當在固定300 W的射頻功率和30 nm的薄膜厚度下,改變退火溫度從未退火至673 K,其實驗結果顯示:當退火溫度為623 K時,非晶質硼碳薄膜合金具有較少的懸掛鍵缺陷,而其光學能隙值為1.90 eV。此外,在退火623 K後,a-BC/n-Si二極體的串聯電阻和理想因子分別為98 Ω和2.43。而a-BC/n-Si元件在未退火和經623 K退火後的內建能障電壓分別為0.45 V與0.88 V。   在本研究中,可以發現經623 K退火後的a-BC/SiO2/n-Si接面元件,在20 mW/cm2的光強度照射後,具有高達93.4%的填充因子和6.3%的光電轉換效率,並且優於文獻上報導過的a-BC/Si接面元件的結果。當施加電壓為0.2 V時,a-BC/SiO2/n-Si二極體的理想因子為1.70。填充因子的增加是歸因於在高溫退火後,硼原子摻雜進入碳薄膜中造成sp2鍵結團簇增加的影響。此外,利用射頻反應式濺鍍/電漿輔助化學氣相沉積法於n型矽基材上製備非晶質硼碳薄膜合金,形成a-BC/SiO2/n-Si太陽能電池,及其有無原生氧化SiO2介面層之影響也在本論文中討論。薄的原生氧化SiO2介面層在Au/a-BC/SiO2/n-Si/Al太陽能電池效能上扮演了一關鍵的角色。因此,考量奈米級厚度、透明的、低成本,與容易大量製造的特點,非晶質硼碳薄膜合金可以被應用在光伏太陽能電池和其他光電元件上。
  The effects of different process parameters on the characteristics of p-type amorphous boron carbon (a-BC) thin film alloys prepared by radio-frequency (RF) reactive sputtering/plasma-enhanced chemical vapor deposition (PECVD) are investigated. The process parameters, such as RF powers, different RF powers at the fixed annealing temperature of 623 K, and annealing temperatures, are considered. RF reactive sputtering/PECVD combines RF reactive sputtering and RF-PECVD; is not dangerous for boron doping, and has all of the advantages of chemical vapor deposition (CVD). Moreover, the p-type a-BC thin film alloys are deposited on n-type silicon (n-Si) substrates to fabricate photovoltaic devices, and their applications for solar cells are discussed.   When changing RF powers at a fixed film thickness of 100 nm, experimental results indicate that as the RF power increases from 100 to 500 W, the deposition rate of a-BC thin film alloys slightly decreases from 68.4 to 60.0 nm/min that is resulted from the increase of the B/C ratio, and the B/C ratio in the thin film alloys increases from 0.0031 to 1.03. The a-BC thin film alloy prepared at the RF power of 300 W has a maximum graphitization degree and sp2 carbon bonds (its ID/IG value is 0.80), so it has the lowest optical band gap (Eg) of 1.83 eV and electrical resistivity of 2.16×104 Ω•cm. All the a-BC thin film alloys prepared with different RF powers are p-type. As the a-BC thin film alloy prepared at the RF power of 300 W, the a-BC/n-Si diode possesses the lowest series resistance of 279 Ω and an ideality factor of 4.90. On the other hand, the trend of Young''s modulus (E) and hardness (H) of a-BC thin film alloys is consistent with the ID/IG and Eg values. This indicates that the E and H of a-BC thin film alloys are affected by the sp2 carbon content. Consequently, it is expected that the structure and property of a-BC thin film alloys can be modified by controlling the deposition parameter of RF powers using RF reactive sputtering/PECVD.   When changing RF powers from 100 to 500 W at the fixed annealing temperature of 623 K and film thickness of 30 nm, the experimental results also show that the a-BC thin film alloy prepared at the RF power of 300 W has the highest ID/IG value of 1.49. Hence, it is expected that the a-BC thin film alloy prepared at the RF power of 300 W has a maximum graphitization degree and sp2 carbon bonds.   When changing annealing temperatures from as-deposited to 673 K at the fixed RF power of 300 W and film thickness of 30 nm, experimental results suggest that as the annealing temperature is 623 K, there are less dangling bonds in the a-BC thin film alloy, and its Eg value is 1.90 eV. Alternatively, after annealed at 623 K, the series resistance and ideality factor of the a-BC/n-Si diode reduce to 98 Ω and 2.43, respectively. The built-in voltages of the a-BC/n-Si devices are 0.45 and 0.88 V for the a-BC thin film alloys before and after annealed at 623 K, respectively.   In this study, it is found that under light illumination of 20 mW/cm2 at room temperature, the a-BC/SiO2/n-Si junctions after annealed at 623 K has a high fill factor of 93.4% and the power conversion efficiency of 6.3%, which is much better than the a-BC/Si junctions reported before. The ideality factor of the a-BC/SiO2/n-Si diode was 1.70 under an applied voltage of around 0.2 V. The enhanced fill factor is ascribed to the B atoms incorporation and the increase in sp2-bonded carbon clusters in the carbon films caused by the high annealing temperature. Moreover, the effects of a-BC/SiO2/n-Si solar cells with or without a thin native SiO2 interfacial layer on n-Si substrates prepared by RF reactive sputtering/PECVD are also discussed. The thin native SiO2 interfacial layer plays a key role in the performance of Au/a-BC/SiO2/n-Si/Al solar cells. Consequently, considering the nanometer-thickness, transparent, low-cost, and easy to produce massively features of these a-BC thin film alloys, they may also find applications in areas of photovoltaic solar cells and other optoelectronic devices.
URI: http://hdl.handle.net/11455/11323
其他識別: U0005-2506201322541100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2506201322541100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.