Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11326
標題: 以常壓有機金屬化學氣相沉積法進行氮化鎵紫外光發光二極體之製作與特性研究
Fabrication and Characterization of GaN-Based UV LEDs Using Atmosphere Pressure Metalorganic Chemical Vapor Deposition
作者: 黃世晟
Huang, Shih-Cheng
關鍵字: 常壓式有機金屬氣相沉積法
atmospheric pressure metal-organic chemical vapor deposition
紫外光發光二極體
差排
光取出效率
內部量子效率
ultraviolet light emitting diode
dislocation
light extraction efficiency
internal quantum efficiency
出版社: 材料科學與工程學系所
引用: 1. S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes”, Appl. Phys. Lett., vol. 64, pp. 1687-1689 (1994) 2. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures”, Jpn. J. Appl. Phys., vol. 34, L797-L799 (1995) 3. G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures”, Appl. Phys. Lett., vol. 71, pp. 2154-2156 (1997) 4. T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. N. Wong, U. Chowdhury, H. K. Kwon, and R. D. Dupuis, “High-voltage GaN pin vertical rectifiers with 2 μm thick i-layer”, Electron Lett., vol. 36, pp. 1971-1972 (2000) 5. G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, “High voltage GaN Schottky rectifiers”, IEEE Trans. Electron Devices, vol. 47, pp. 692-696 (2000) 6. B. S. Shelton, D. J. H. Lambert, H. J. Jang, M. M. Wong, U. Chowdhury, Z. T. Gang, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition”, IEEE Trans. Electron Devices, vol. 48, pp. 490-494 (2001) 7. A. P. Zhang, J. Han, F. Ren, K. E. Waldrio, C. R. Abernathy, B. Luo, G. Dang, J. W. Johnson, K. P. Lee, and S. J. Pearton, “GaN Bipolar Junction Transistors with Regrown Emitters”, Electronchem. Solid-State Lett., vol. 4, G39-G41 (2001) 8. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Appl. Phys. Lett., vol. 81, pp. 1246-1248 (2002) 9. H. Morkoc, Nitride Semiconductors and devices, (Springer-Verlag, Berlin, 1999) 10. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN blue light-emitting diodes”, Journal of Luminescence, vol. 5, pp. 84-86 (1992) 11. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., vol. 48, pp. 353-355 (1986) 12. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114 (1989) 13. S. Nakamura, T. Mukai, M. Senoh, and N. Jwasa, “Hole Compensation Mechanism of P-Type GaN Films”, Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266 (1992) 14. A. Zukauskas, M. S. Schur and R. Gaska, “Introduction to Solid State Lighting” (Wiely-Interscience, New York, 2002) 15. P. Li, Z. Wang, Z. Yang, Q. Guo, X. Li, “Luminescent characteristics of LiCaBo3:M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphor for white LED”, Journal of Luminescence, vol. 130, pp. 222-225 (2010) 16. Z. Li, S. Gao, X. Chen, Q. Yu, “Synthesis and luminescence properties of green phosphors Ca6Sr4(Si2O7)3Cl2:Eu2+ for white light emitting diodes”, Journal of Luminescence, vol. 132, pp. 1497-1500 (2012) 17. Z. Y. Mao, Y. C. Zhu, L. Gan, Y. Zeng, F. F. Xu, Y. Wang, D. J. Wang, “Novel white-light-emitting SiAlON-crystal/glass composite phosphor prepared by facile strategy for white light-emitting-diode”, Materials Letters, vol. 80, pp. 63-65 (2012) 18. C. J. Humphreys, MRS BULLETIN 33, 459 (2008) 19. O. I. Tokode, R. Prabhu, L. A. Lawton, P. K. J. Robertson, “Effect of controlled periodic-based illumination on the photonic efficiency of photocatalytic degradation of methyl orange”, Journal of Catalysis, vol. 290, pp. 138-142 (2012) 20. W. Han, W. P. Zhu, P. Y. Zhang, Y. Zhang, L. S. Li, “Photocatalytic degradation of phenols in aqueous solution under irradiation of 254 and 185nm UV light”, Catalysis Today, vol. 90, pp. 319-324 (2004) 21. Y. C. Dong, Z. P. Bai, R. H. Liu, T. Zhu, “Preparation of fibrous TiO2 photocatalyst and its optimization towards the decomposition of indoor ammonia under illumination”, Catalysis Today, vol. 126, pp. 320-327 (2007) 22. B. Golaz, V. Michaud, Y. Leterrier, J.-A.E. Månson, “UV intensity, temperature and dark-curing effects in cationic photo-polymerization of a cycloaliphatic epoxy resin”, Polymer, vol. 53, pp. 2038-2048 (2012) 23. Y. J. Xia, F. Q. Huang, W. D. Wang, Y. M. Wang, K. D. Yuan, M. L. Liu, J. L. Shi, “A novel red-emitting Mn-activated BaZnOS phosphor”, Optical Materials, vol. 31, pp. 311-314 (2008) 24. A. Khan, K. Balakrishnan and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides”, Nature Photonics, vol. 2, pp. 77-84 (2008) 25. Y. H. Liu, H. D. Li, J. P. Ao, Y. B. Lee, T. Wang, S. Sakai, “Influence of undoped GaN layer thickness to the performance of AlGaN/GaN-based ultraviolet light-emitting diodes”, J. Cryst. Growth, vol. 268, pp. 30-34 (2004) 26. T. Kawashima, K. Iida, Y. Miyake, A. Honshio, H. Kasugai, M. Imura, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, “High-quality Al0.12Ga0.88N film with low dislocation density grown on facet-controlled Al0.12Ga0.88N by MOVPE”, J. Cryst. Growth, vol. 272, pp. 377-380 (2004) 27. T Wang, Y.H Liu, Y.B Lee, Y Izumi, J.P Ao, J Bai, H.D Li, S Sakai, “Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes”, J. Cryst. Growth, vol. 235, pp. 177-182 (2002) 28. S. Mochizuki, T. Detchprohm, S. Sano, T. Nakamura, H. Amano, I. Akasaki, “Reduction of threading dislocation density in AlXGa1−XN grown on periodically grooved substrates”, J. Cryst. Growth, vol. 237–239, pp. 1065-1069 (2002) 29. Amano, I. Akasaki, A. Bandoh, “Epitaxial lateral overgrowth of AlXGa1−XN on sapphire and its application to UV-B-light-emitting devices”, J. Cryst. Growth, vol. 298, pp. 265-267 (2007) 30. M. Sumiya, Y. Kurumasa, K. Ohtsuka, K. Kuwahara, Y. Takano, S. Fuke, “Reduction of defect density in GaN epilayer having buried Ga metal by MOCVD”, J. Cryst. Growth, vol. 237–239, pp. 1060-1064 (2002) 31. T. Osipowicz, E.J. Teo, A.A. Bettiol, F. Watt, M.S. Hao, S.J. Chua, “2 MeV proton channeling contrast microscopy of LEO GaN thin film structures”, Thin Solid Films, vol. 424, pp. 139-142 (2003) 32. N. Nakanishi, K. Kusakabe, T. Yamazaki, K. Ohkawa, I. Hashimoto, “In concentration and tilt of the a-plane InGaN/GaN film by TEM analysis”, Physica B: Condensed Matter, vol. 376–377, pp. 527-531 (2006) 33. T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-Based Blue Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates”, Jpn. J. Appl. Phys., vol. 37, pp. L839-L841 (1998) 34. A. Yasan and M. Razeghi, “III-nitride Ultraviolet Light Emitting Sources” in Optoelectronic Devices: III-Nitrides, M. Razeghi and M. Henini, Eds, Elsevier Ltd., 2004, pp. 213-249 35. P. Hinterdorfer and Y. F. Dufrêne, “Detection and localization of single molecular recognition events using atomic force microscopy”, Nature Methods, vol. 3, pp. 347-355 (2006) 36. F. J. Giessibl, “Advances in atomic force microscopy”, Rev. Mod. Phys., vol. 75, pp. 949-983 (2003) 37. D. K. Sckroder, “Chemical and Physical characterization” in Semiconductor Material and Device Characterization, John Wiley, 1990, pp. 513 38. D. B. Williams and C. B. Carter, “The Instrument”, in Transmission Electron Microscopy”, New York: Plenum, 1996, pp. 141 39. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, T. Mukai, “ Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultraviolet Chip”, Jpn. J. Appl. Phys., vol. 41, pp. L371-L373 (2002). 40. C. H. Kuo, J. K. Sheu, S. J. Chang, Y. K. Su, L. W.Wu, J. M. Tsai, C. H. Liu, R. K.Wu, “n-UV+Blue/Green/Red White Light Emitting Diode Lamps”, Jpn. J. Appl. Phys., vol. 42, pp. 2284-2287 (2003). 41. S. H. Jung, D. S. Kang, D. Y. Jeon, “Effect of substitution of nitrogen ions to red-emitting Sr3B2O6−3/2xNx:Eu2+ oxy-nitride phosphor for the application to white LED”, J. Cryst. Growth, vol. 326, pp. 116-119 (2011) 42. X. G. Zhang, J. L. Zhang, J. Q. Huang, X. P. Tang, M. L. Gong, “Synthesis and luminescence of Eu2+-doped alkaline-earth apatites for application in white LED”, Journal of Luminescence, vol. 130, pp. 554-559 (2010) 43. I. Schnitzer, E. Yablonovich, C. Caneau, T.J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes”, Appl. Phys. Lett. vol. 63, pp. 2174-2176 (1993) 44. R. Wwindisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G.H. Do¨ hler, P. Heremans, “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography”, IEEE Trans. Electron Devices, vol. 47, pp. 1492-1498 (2000). 45. L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo,W. C. Lai, T. C.Wen, J. M. Tsai, J. K. Sheu, “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer”, Solid State Electron, vol. 47, pp. 2027-2030 (2003). 46. C. Huh, K. S. Lee, E. J. Kang, S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., vol. 93, pp. 9393-9385 (2003). 47. Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, C. S. Chang, “InGaN-GaN MQW LEDs with Si treatment”, IEEE Photon. Technol. Lett., vol. 17, pp. 1620-1622 (2005). 48. C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, Y. K. Su, “Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD”, IEEE Electron Device Lett., vol. 26, pp. 464-466 (2005). 49. R. H. Horng, S. H. Huang, C. C. Yang, D. S.Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography”, IEEE J. Sel. Topics. Quantum Electron., vol. 12, pp. 1196-1201 (2006). 50. E. H. Park, I. T. Ferguson, S. K. Jeon, J. S. Park, T. K. Yoo, “InGaN-light emitting diode with high density truncated hexagonal pyramid shaped p-GaN hillocks on the emission surface”, Appl. Phys. Lett., vol. 89, 251106 (2006). 51. R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, D. S. Wuu, “Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates”, J. Cryst. Growth, vol. 298, pp. 219-222 (2007). 52. T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates”, Jpn. J. Appl. Phys., vol. 38, pp. 5735-5739 (1999). 53. D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S.I. Nagahama, T. Mukai, “Watt-Class High-Output-Power 365-nm Ultraviolet Light-Emitting Diodes”, Jpn. J. Appl. Phys., vol. 43, pp. 5945-5950 (2004). 54. J. S. Park, D. W. Fothergill, X. Zhang, Z. J. Reitmeier, J. F. Muth, R. F. Davis, “Effect of Carrier Blocking Layers on the Emission Characteristics of AlGaN-based Ultraviolet Light Emitting Diodes”, Jpn. J. Appl. Phys., vol. 44, pp. 7254-7259 (2005). 55. J. S. Park, D. W. Fothergill, P. Wellenius, S. M. Bishop, J. F. Muth, R. F. Davis, “Origins of Parasitic Emissions from 353-nm AlGaN-based Ultraviolet Light Emitting Diodes over SiC Substrates”, Jpn. J. Appl. Phys., vol. 45, pp. 4083-4086 (2006). 56. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN nearultraviolet chip”, Jpn. J. Appl. Phys., vol. 41, pp. L371–L373 (2002). 57. D. Morita, M. Sano, M. Yamamoto, T. Murayama, S. Nagahama, and T. Mukai, “High output power 365nm ultraviolet light emitting diode of GaN-free structure”, Jpn. J. Appl. Phys., vol. 41, pp. L1434–L1436 (2002). 58. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. C. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template”, Appl. Phys. Lett., vol. 93, 081108-1 (2008). 59. R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, and D. S. Wuu, “Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates”, J. Cryst. Growth, vol. 298, pp. 219–222 (2007). 60. S. Bohyama, H. Miyake, K. Hiramatsu, Y. Tsuchida, and T. Maeda, “Freestanding GaN substrate by advanced facet-controlled epitaxial lateral overgrowth technique with masking side facets”, Jpn. J. Appl. Phys., vol. 44, no. 1, pp. L24–L26 (2005). 61. Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, H. L. Zhou, and C. G. Fonstad, “Improvement of microstructural and optical properties of GaN layer on sapphire by nanoscale lateral epitaxial overgrowth”, Appl. Phys. Lett., vol. 88, 211908-1 (2006). 62. W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-power GaN mirror- Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques”, IEEE Photon. Tech. Lett., vol. 17, no. 9, pp. 1809–1811 (2005). 63. F. Habel, P. Br¨uckner, and F. Scholz, “Marker layers for the development of a multistep GaN FACELO process”, J. Cryst. Growth, vol. 272, pp. 515–519 (2004). 64. K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)”, J. Cryst. Growth, vol. 221, pp. 316–326 (2000). 65. K. Yamamoto, H. Ishikawa, T. Egawa, T. Jimbo, and M. Umeno, “EBIC observation of n-GaN grown on sapphire substrates by MOCVD”, J. Cryst. Growth, vol. 189/190, pp. 575–579 (1998). 66. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “X-ray diffraction analysis of the defect structure in epitaxial GaN”, Appl. Phys. Lett., vol. 77, pp. 2145–2147 (2000). 67. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., vol. 68, pp. 643–645 (1996). 68. A. Strittmatter, M. Teepe, C. Knollenberg, N.M. Johnson, “Coalescence during epitaxial lateral overgrowth of (Al,Ga)N layers”, J. Cryst. Growth, vol. 314, pp. 1-4 (2011) 69. S. Nakamura, “InGaN-based blue light-emitting diodes and laser diodes”, J. Cryst. Growth, vol. 201–202, pp. 290-295 (1999) 70. J. H. Lee; S. M. Hwang; N. –S. Kim, J. H. Lee, “InGaN-Based High-Power Flip-Chip LEDs With Deep-Hole-Patterned Sapphire Substrate by Laser Direct Beam Drilling”, IEEE Electron Device Letters, vol. 31, pp. 698-700 (2010) 71. R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, D. S. Wuu, “Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates”, J. Cryst. Growth, vol. 298, pp. 219-222 (2007) 72. K. Hoshino, Y. Arakawa, “Formation of high-density GaN self-assembled quantum dots by MOCVD”, J. Cryst. Growth, vol. 272, pp. 161-166 (2004) 73. S. Pereira, “On the interpretation of structural and light emitting properties of InGaN/GaN epitaxial layers grown above and below the critical layer thickness”, Thin Solid Films, vol. 515, pp. 164-169 (2006) 74. L. Jiawei, Y. Zhizhen, N. M. Nasser, "GaN-based quantum dots", Physica E, vol. 16, pp. 244-252 (2003) 75. B. Damilano, N. Grandjean, J. Massies, F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range”, Appl. Surf. Sci., vol. 164, pp. 241-245 (2000) 76. F. Habel, P. Brückner, and F. Scholz, “Marker layers for the development of a multistep GaN FACELO process”, J. Cryst. Growth, vol. 272, pp. 515-519 (2004) 77. K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)”, J. Cryst. Growth, vol. 221, pp. 316-326 (2000) 78. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “X-ray diffraction analysis of the defect structure in epitaxial GaN”, Appl. Phys. Lett., vol. 77, pp. 2145-2147 (2000) 79. I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, M. J. Kappers, and C. J. Humphreys, “Carrier leakage in InGaN quantum well light-emitting diodes emitting at 480 nm”, Appl. Phys. Lett., vol. 82, pp. 2755-2757 (2003). 80. K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, “Measurement of electron overflow in 450 nm InGaN light-emitting diode structures”, Appl. Phys. Lett., vol. 94, pp. 061116-061118 (2009). 81. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer”, Appl. Phys. Lett., vol. 97, 261103 (2010). 82. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence”, Appl. Phys. Lett., vol. 91, 141101 (2007). 83. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes”, Appl. Phys. Lett., vol. 98, 161107 (2011). 84. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, “Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes”, Appl. Phys. Lett., vol. 96, 133502 (2010). 85. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes”, Appl. Phys. Lett., vol. 91, 231114 (2007). 86. J. Wang, L. Wang, W. Zhao, Z. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization”, Appl. Phys. Lett., vol. 97, 201112 (2010). 87. A. Chitnis, J. P. Zhang, V. Adivarahan, M. Shatalov, S. Wu, R. Pachipulusu, V. Mandavilli, and M. A. Khan, “Improved performance of 325-nm emission AlGaN ultraviolet light-emitting diodes”, Appl. Phys. Lett., vol. 82, pp. 2565-2567 (2003). 88. A. Sandhu, “The future of ultraviolet LEDs”, Nat. Photonics, vol. 1, pp. 38 (2007). 89. I. N. Martyanov, K. J. Klabunde, “Comparative study of TiO2 particles in powder form and as a thin nanostructured film on quartz”, J. Catal., vol. 225, pp.408-416 (2004) 90. J. P. Ghosh, R. Sui, C. H. Langford, G. Achari, C. P. Berlinguette, “A comparison of several nanoscale photocatalysts in the degradation of a common pollutant using LEDs and conventional UV light”, Water Research, vol. 43, pp. 4499-4506 (2009) 91. Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar, and R. S. Liu, “Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes”, Appl. Phys. Lett., vol. 90, 151108 (2007). 92. Y. C. Chiu, W. R. Liu, C. K. Chang, C. C. Liao, Y. T. Yeh, S. M. Jang, and T. M. Chen, “Ca2PO4Cl : Eu2+: an intense near-ultraviolet converting blue phosphor for white light-emitting diodes”, J. Mater. Chem., vol. 20, pp. 1755-1758 (2010). 93. L. Guan, B. Yang, S. Dong, H. Zhang, Z. Yang, Q. Guo, G. S. Fu, “A bluish green chlorosilicate phosphor for UV based white LEDs”, Mater. Lett., vol. 71, pp. 111-113 (2012) 94. Y. Z. Guo, X. B. Yu, J. Liu, X. Y. Yang, “Photoluminescence of Eu2+-activated Na1−xAl1−xSi1+xO4 upon UV excitation”, J. Rare Earths, vol. 28, pp. 34-36 (2010) 95. H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes”, J. Appl. Phys., vol. 97, 091101 (2005). 96. A. Knauer, H. Wenzel, T. Kolbe, S. Einfeldt, M. Weyers, M. Kneissl, and G. Tränkle, “Effect of the barrier composition on the polarization fields in near UV InGaN light emitting diodes”, Appl. Phys. Lett., vol. 92, 191912 (2008). 97. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop”, Appl. Phys. Lett., vol. 93, 041102 (2008). 98. J. J. Wu, G. Y. Zhang, X. L. Liu, Q. S. Zhu, Z. G. Wang, Q. J. Jia, and L. P. Guo, “Effect of an indium-doped barrier on enhanced near-ultraviolet emission from InGaN/AlGaN:In multiple quantum wells grown on Si(111)”, Nanotechnology, vol. 18, pp. 015402 (2007). 99. S. H. Baek, J. O. Kim, M. K. Kwon, I. K. Park, S. I. Na, J. Y. Kim, B. J. Kim, and S. J. Park, “Enhanced carrier confinement in AlInGaN-InGaN quantum wells in near ultraviolet light-emitting diodes”, IEEE Photon. Technol. Lett., vol. 18, pp. 1276-1278 (2006). 100. Q. Shan, Q. Dai, S. Chhajed, J. Cho, and E. F. Schubert, “Analysis of thermal properties of GaInN light-emitting diodes and laser diodes”, J. Appl. Phys., vol. 108, 084504 (2010). 101. APSYS by Crosslight Software Inc., Burnaby, Canada: http://www.crosslight.com. 102. Y. Yang, X. A. Cao, and C. Yan, “Investigation of the Nonthermal Mechanism of Efficiency Rolloff in InGaN Light-Emitting Diodes”, IEEE Trans. Electron Devices, vol. 55, pp. 1771-1775 (2008). 103. F. Bernardini, in “Nitride Semiconductor Devices: Principles and Simulation”, J. Piprek, Ed. Wiley, New York, pp. 49–67 (2007). 104. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett., vol. 91, 183507 (2007). 105. J. Bai, T. Wang and S. Sakai, “Photoluminescence Study on InGaN/GaN Quantum Well Structure Grown on (11-20) Sapphire Substrate”, Jpn. J. Appl. Phys., vol. 40, pp. 4445–4449 (2001) 106. T. Wang, G. Raviprakash, F. Ranalli, C. N. Harrison, J. Bai, J. P. R. David, P. J. Parbrook, J. P. Ao and Y. Ohno, “Effect of strain relaxation and exciton localization on performance of 350-nm AlInGaN quaternary light-emitting diodes”, J. Appl. Phys., vol. 97, pp. 083104 (2005) 107. P. G. Eliseev, P. Perlin, J. H. Lee, and M. Osin´ ski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources”, Appl. Phys. Lett., vol. 71, pp. 569-571 (1997)
摘要: 本博士論文使用常壓型有機金屬氣相沉積法對發光波長介於400~365奈米的紫外光發光二極體,進行磊晶片的製作與元件特性的研究。由於發光波長大於395奈米的近紫外光發光二極體,結晶缺陷密度對其發光特性之影響較不明顯,因此針對此一發光波長範圍之近紫外光發光二極體,吾人專注在如何由磊晶的方法提昇元件的光取出效率。本研究中,使用了三種不同之表面粗糙化的磊晶技術來達到提升光取出效率的目的,第一種方法為使用P型氮化鎵覆蓋於高滲雜鎂之氮化鎵處理層上,形成微米級之島狀粗化表面;第二種方法為使用低溫(775~875℃)成長之P型氮化鎵來形成奈米級之孔狀粗化表面;最後,結合微米級之島狀粗化表面及奈米級之孔狀粗化表面來形成珊瑚狀之粗化表面則為第三種方法。使用微米級之島狀粗化表面、奈米級之孔狀粗化表面及珊瑚狀之粗化表面分別可提高光取出效率達到14%、6%及32%。 當紫外光發光二極體的發光波長越短,結晶缺陷密度對其發光特性之影響則越趨明顯,隨著缺陷密度的提高,紫外光發光二極體之內部量子效率明顯地趨於惡化。因此針對發光波長小於385奈米的紫外光發光二極體,吾人將研究的重點放在如何以磊晶的方法降低磊晶層之缺陷,以達到提昇元件之內部量子效之目的。本研究中,吾人首先利用高滲雜鎂之氮化鎵成長模式轉換層使氮化鎵的成長由二維成長轉變為三維成長模式,差排在三維成長的過程中被彎曲或終結,差排密度則由2.5x108cm-2 降低至 3.5x107cm-2。由於磊晶品質的改善,紫外光發光二極體之內部量子效率同時得到明顯的提升。當使用了成長模式轉換層之磊晶片製作成1mmx1mm面積之垂直結構發光二極體元件後,元件之發光效率提昇達28%。然而,此技術所使用之高滲雜鎂之氮化鎵成長模式轉換層其本質為P型之氮化鎵材料,當紫外光發光二極體之發光波長小於380奈米時,此高滲雜鎂之氮化鎵成長模式轉換層之自吸收效應將會抵消其原有之貢獻。因此,吾人針對發光波常介於370至375奈米之紫外光發光二極體,開發一種高滲雜矽之置入層來避免材料之自吸收效應並提升紫外光發光二極體之內部量子效率。此高滲雜矽之置入層有效地將N型氮化鋁鎵磊晶層中之缺陷密度由9x108cm-2 降低至 8x107cm-2。當製作成垂直結構發光二極體元件後,元件之發光效率提昇達40%。 一般而言,氮化鋁鎵常用來當作量子能障層的材料以提升紫外光發光二極體之量子侷限效應,但是低溫下成長之氮化鎵系列材料,通常伴隨著較差的磊晶品質,特別是材料中含有鋁的成分時,此現象更為明顯。本論文中,使用氮化鋁鎵銦四元材料成長多重量子井之能障層,取代原先使用之氮化鋁三元材料,磊晶品質及量子井層與量子能障層間之界面均得到明顯的改善,從APSYS模擬的結果顯示,發光區域中載子的分佈變得更為均勻了。此研究結果分別使380及365奈米之紫外光發光二極體之發光效率提升達到25%及62%。
In this dissertation, atmospheric pressure metal-organic chemical vapor deposition system is used for fabricating ultraviolet light emitting diode (UV LEDs) epitaxial wafers in the wavelength range of 365 to 400-nm. So far when the light-emitting wavelength greater than 395-nm, the crystal defects do not affect luminescence properties seriously. For the UV LEDs in longer wavelength (>395-nm), I focus on seeking an epitaxial method to enhance the light extraction efficiency of the components. In this study, three different epitaxial surface roughening techniques were used to achieve the enhancement of light extraction efficiency. The first method is using a heavily Mg-doped treating layer capped with a p-type GaN capping layer to form the micro-island type texturing surface. The second method is using a lower temperature (775~875℃) growth of p-type GaN layer to form the nano-hole type texturing surface. Finally, a coral-like texturing surface formed by combining the micro-island type and nano-hole type surfaces is the third method. The enhancements of light extraction efficiencies using micro-island, nano-hole, and coral-like texturing surface are 14%, 6%, and 32%, respectively. With the light-emitting wavelength are getting shorter, the crystal defects affect the luminescence properties of UV LEDs become serious. Along with the increase of dislocation density, internal quantum efficiency (IQE) of UV LEDs are worse significantly. Therefore, for the UV LEDs with emitting wavelength shorter than 385-nm, how to reduce the dislocation densities in the materials and improve the internal quantum efficiencies of UV LEDs were focused. In this study, the growth mode of GaN films was transited from two-dimension (2D) growth to three-dimension (3D) growth by using a heavily Mg-doped GaN growth mode transition layer (GMTL). Threading dislocations are bended or terminated during the 3D growth process. The dislocation density in the GaN film can be reduced from 2.5x108cm-2 to 3.5x107cm-2. Due to the improvement of epitaxial quality, the internal quantum efficiency of UV LEDs is also improved significantly. After fabricating the epitaxial wafer with GMTL into vertical chip (size: 1mmx1mm), a 28% enhancement of output power can be achieved. Although this GMTL method also can be used to fabricate UV LEDs with emitting wavelength shorter than 380-nm, but the enhancement of IQE will be offset by the self-absorption effect from heavily Mg-doped GMTL. Therefore, I use a heavily Si-doped insertion layer to prevent the self-absorption issue and increase the IQE of UV LEDs in the emitting wavelength of 370~375-nm. By using the Si-doped insertion layer, the dislocation density in the n-type AlGaN layer can be reduced from 9x108cm-2 to 8x107cm-2. After vertical type chip fabricated, a 40% enhancement of output power can be achieved. Generaly, AlGaN is commonly used for the materials of quantum barrier layers to enhance the quantum confinement effect in UV LEDs. However GaN-based materials grown at low temperature always demonstrate pool crystal quality especially when the materials contain aluminum (Al) components. In this study, we use AlInGaN quaternary materials instead of AlGaN ternary materials to growing quantum barrier layers. Both of the crystal quality and the interface between well and barrier layers are improved. From APSYS simulation results, the carrier distribution in light emitting region becomes more uniform. The enhancement of output power for 380 and 365-nm UV LEDs are 25% and 62%, respectively.
URI: http://hdl.handle.net/11455/11326
其他識別: U0005-2908201201471700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908201201471700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.