Please use this identifier to cite or link to this item:
標題: 以水熱法合成二氧化鈰奈米線和氧化鎢-二氧化鈰核/殼結構奈米棒及其氣感之應用
Hydrothermal synthesis of CeO2 nanowires and WO3-CeO2 core/shell nanorods for gas sensing applications
作者: 王芃文
Wang, Peng-Wen
關鍵字: 水熱法
Hydrothermal synthesis
core/shell nanostructures
gas sensing
出版社: 材料科學與工程學系所
引用: 曾明漢, 氣體感測器之簡介、應用及市場. 材料與社會 1992, 68, 50. 2. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M., Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles. Nano Letters 2005, 5 (4), 667-673. 3. Ramgir, N. S.; Mulla, I. S.; Vijayamohanan, K. P., A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sensors and Actuators B: Chemical 2005, 107 (2), 708-715. 4. Kuang, Q.; Jiang, Z.-Y.; Xie, Z.-X.; Lin, S.-C.; Lin, Z.-W.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S., Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure:  A Case of ZnO/SnO2. Journal of the American Chemical Society 2005, 127 (33), 11777-11784. 5. Jin, C.; Kim, H.; Lee, C., Enhancement of the emission from TeO2 nanorods by encapsulation with ZnO. Crystal Research and Technology 2011, 46 (10), 1065-1070. 6. Xue, X.; Xing, L.; Chen, Y.; Shi, S.; Wang, Y.; Wang, T., Synthesis and H2S Sensing Properties of CuO−SnO2 Core/Shell PN-Junction Nanorods. The Journal of Physical Chemistry C 2008, 112 (32), 12157-12160. 7. Haxel, G. B.; Hedrick, J. B.; Orris, G. J., Rare Earth Elements—Critical Resources for High Technology. USGS Fact Sheet 2002, 087. 8. Wang, Z. L.; Feng, X., Polyhedral Shapes of CeO2 Nanoparticles. The Journal of Physical Chemistry B 2003, 107 (49), 13563-13566. 9. Fu, X. Q.; Wang, C.; Yu, H. C.; Wang, Y. G.; Wang, T. H., Fast humidity sensors based on CeO2 nanowires. Nanotechnology 2007, 18 (14), 145503. 10. Li, R.; Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T., Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics 2002, 151 (1–4), 235-241. 11. Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y., Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis 2005, 229 (1), 206-212. 12. Pijolat, C.; Tournier, G.; Viricelle, J. P., Detection of CO in H2-rich gases with a samarium doped ceria (SDC) sensor for fuel cell applications. Sensors and Actuators B: Chemical 2009, 141 (1), 7-12. 13. Go, Y. B.; Jacobson, A. J., Solid Solution Precursors to Gadolinia-Doped Ceria Prepared via a Low-Temperature Solution Route. Chemistry of Materials 2007, 19 (19), 4702-4709. 14. Mani, T. V.; Varma, H. K.; Damodaran, A. D.; Warrier, K. G. K., Sol-spray technique for fine-grained ceria particles. Ceramics International 1993, 19 (2), 125-128. 15. Barreca, D.; Gasparotto, A.; Maccato, C.; Maragno, C.; Tondello, E.; Comini, E.; Sberveglieri, G., Columnar CeO2 nanostructures for sensor application. Nanotechnology 2007, 18 (12), 125502. 16. Liao, L.; Mai, H. X.; Yuan, Q.; Lu, H. B.; Li, J. C.; Liu, C.; Yan, C. H.; Shen, Z. X.; Yu, T., Single CeO2 Nanowire Gas Sensor Supported with Pt Nanocrystals: Gas Sensitivity, Surface Bond States, and Chemical Mechanism. The Journal of Physical Chemistry C 2008, 112 (24), 9061-9065. 17. Liu, Y.; Ding, Y.; Zhang, L.; Gao, P.-X.; Lei, Y., CeO2 nanofibers for in situ O2 and CO sensing in harsh environments. RSC Advances 2012. 18. Cui, Q.; Dong, X.; Wang, J.; Li, M., Direct fabrication of cerium oxide hollow nanofibers by electrospinning. Journal of Rare Earths 2008, 26 (5), 664-669. 19. Zhang, D.; Fu, H.; Shi, L.; Pan, C.; Li, Q.; Chu, Y.; Yu, W., Synthesis of CeO2 Nanorods via Ultrasonication Assisted by Polyethylene Glycol. Inorganic Chemistry 2007, 46 (7), 2446-2451. 20. Wu, G. S.; Xie, T.; Yuan, X. Y.; Cheng, B. C.; Zhang, L. D., An improved sol–gel template synthetic route to large-scale CeO2 nanowires. Materials Research Bulletin 2004, 39 (7–8), 1023-1028. 21. Ho, C.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S., Morphology-Controllable Synthesis of Mesoporous CeO2 Nano- and Microstructures. Chemistry of Materials 2005, 17 (17), 4514-4522. 22. Walton, R. I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews 2002, 31 (4), 230-238. 23. Mai, H.-X.; Sun, L.-D.; Zhang, Y.-W.; Si, R.; Feng, W.; Zhang, H.-P.; Liu, H.-C.; Yan, C.-H., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. The Journal of Physical Chemistry B 2005, 109 (51), 24380-24385. 24. Yan, L.; Yu, R.; Chen, J.; Xing, X., Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution. Crystal Growth & Design 2008, 8 (5), 1474-1477. 25. Pan, C.; Zhang, D.; Shi, L.; Fang, J., Template-Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO2 Nanorods, Nanotubes, Nanowires, and Nanocubes. European Journal of Inorganic Chemistry 2008, 2008 (15), 2429-2436. 26. Wu, X.; Kawi, S., Synthesis, Growth Mechanism, and Properties of Open-Hexagonal and Nanoporous-Wall Ceria Nanotubes Fabricated via Alkaline Hydrothermal Route. Crystal Growth & Design 2010, 10 (4), 1833-1841. 27. Huang, P. X.; Wu, F.; Zhu, B. L.; Gao, X. P.; Zhu, H. Y.; Yan, T. Y.; Huang, W. P.; Wu, S. H.; Song, D. Y., CeO2 Nanorods and Gold Nanocrystals Supported on CeO2 Nanorods as Catalyst. The Journal of Physical Chemistry B 2005, 109 (41), 19169-19174. 28. Chen, G.; Xu, C.; Song, X.; Zhao, W.; Ding, Y.; Sun, S., Interface Reaction Route to Two Different Kinds of CeO2 Nanotubes. Inorganic Chemistry 2007, 47 (2), 723-728. 29. Tang, B.; Zhuo, L.; Ge, J.; Wang, G.; Shi, Z.; Niu, J., A surfactant-free route to single-crystalline CeO2 nanowires. Chemical Communications 2005, (28), 3565-3567. 30. Yang, R.; Guo, L., Synthesis of cubic fluorite CeO2 nanowires. Journal of Materials Science 2005, 40 (5), 1305-1307. 31. Vantomme, A.; Yuan, Z.-Y.; Du, G.; Su, B.-L., Surfactant-Assisted Large-Scale Preparation of Crystalline CeO2 Nanorods. Langmuir 2004, 21 (3), 1132-1135. 32. Wu, N.-C.; Shi, E.-W.; Zheng, Y.-Q.; Li, W.-J., Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders. Journal of the American Ceramic Society 2002, 85 (10), 2462-2468. 33. Woodward, P. M.; Sleight, A. W.; Vogt, T., Ferroelectric Tungsten Trioxide. Journal of Solid State Chemistry 1997, 131 (1), 9-17. 34. Kuti, L. M.; Bhella, S. S.; Thangadurai, V., Revisiting Tungsten Trioxide Hydrates (TTHs) Synthesis - Is There Anything New? Inorganic Chemistry 2009, 48 (14), 6804-6811. 35. Chang, M.-T.; Chou, L.-J.; Chueh, Y.-L.; Lee, Y.-C.; Hsieh, C.-H.; Chen, C.-D.; Lan, Y.-W.; Chen, L.-J., Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties. Small 2007, 3 (4), 658-664. 36. Akiyama, M.; Tamaki, J.; Miura, N.; Yamazoe, N., Tungsten Oxide-Based Semiconductor Sensor Highly Sensitive to NO and NO2. Chemistry Letters 1991, 20 (9), 1611-1614. 37. Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Ding, Y.; Wang, Z. L., Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Applied Physics Letters 2006, 88 (20), 203101-3. 38. Cao, B.; Chen, J.; Tang, X.; Zhou, W., Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection. Journal of Materials Chemistry 2009, 19 (16), 2323-2327. 39. Hong, K.; Yiu, W.; Wu, H.; Gao, J.; Xie, M., A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotechnology 2005, 16 (9), 1608. 40. Xiao, Z.; Zhang, L.; Tian, X.; Fang, X., Fabrication and structural characterization of porous tungsten oxide nanowires. Nanotechnology 2005, 16 (11), 2647. 41. Lu, X.; Liu, X.; Zhang, W.; Wang, C.; Wei, Y., Large-scale synthesis of tungsten oxide nanofibers by electrospinning. Journal of Colloid and Interface Science 2006, 298 (2), 996-999. 42. Wang, J.; Khoo, E.; Lee, P. S.; Ma, J., Controlled Synthesis of WO3 Nanorods and Their Electrochromic Properties in H2SO4 Electrolyte. The Journal of Physical Chemistry C 2009, 113 (22), 9655-9658. 43. Cao, T.; Li, Y.; Wang, C.; Wei, L.; Shao, C.; Liu, Y., Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures. Materials Research Bulletin 2010, 45 (10), 1406-1412. 44. Chen, Y.-J.; Xiao, G.; Wang, T.-S.; Zhang, F.; Ma, Y.; Gao, P.; Zhu, C.-L.; Zhang, E.; Xu, Z.; Li, Q.-h., Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods. Sensors and Actuators B: Chemical 2011, 156 (2), 867-874. 45. Xu, L.; Song, H.; Dong, B.; Wang, Y.; Chen, J.; Bai, X., Preparation and Bifunctional Gas Sensing Properties of Porous In2O3−CeO2 Binary Oxide Nanotubes. Inorganic Chemistry 2010, 49 (22), 10590-10597. 46. Smith, W.; Zhao, Y. P., Superior photocatalytic performance by vertically aligned core–shell TiO2/WO3 nanorod arrays. Catalysis Communications 2009, 10 (7), 1117-1121. 47. Lin, M.; Fu, Z. Y.; Tan, H. R.; Tan, J. P. Y.; Ng, S. C.; Teo, E., Hydrothermal Synthesis of CeO2 Nanocrystals: Ostwald Ripening or Oriented Attachment? Crystal Growth & Design 2012, 12 (6), 3296-3303. 48. Knauss, K. G.; Dibley, M. J.; Bourcier, W. L.; Shaw, H. F., Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300°C. Applied Geochemistry 2001, 16 (9–10), 1115-1128. 49. Whittingham, M. S.; Guo, J.-D.; Chen, R.; Chirayil, T.; Janauer, G.; Zavalij, P., The hydrothermal synthesis of new oxide materials. Solid State Ionics 1995, 75 (0), 257-268. 50. Chen, P. L.; Chen, I. W., Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method. Journal of the American Ceramic Society 1993, 76 (6), 1577-1583. 51. Zhang, J.; Huang, F.; Lin, Z., Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2010, 2 (1), 18-34. 52. Gu, Z.; Ma, Y.; Yang, W.; Zhang, G.; Yao, J., Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chemical Communications 2005, (28), 3597-3599. 53. Gu, Z.; Zhai, T.; Gao, B.; Sheng, X.; Wang, Y.; Fu, H.; Ma, Y.; Yao, J., Controllable Assembly of WO3 Nanorods/Nanowires into Hierarchical Nanostructures. The Journal of Physical Chemistry B 2006, 110 (47), 23829-23836. 54. 張嘉純. 以水熱法合成氧化鎢一維奈米核/殼結構及其電變色性質的探討. 中興大學, 2010. 55. Penza, M.; Tagliente, M. A.; Mirenghi, L.; Gerardi, C.; Martucci, C.; Cassano, G., Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor. Sensors and Actuators B: Chemical 1998, 50 (1), 9-18. 56. Deb, B.; Desai, S.; Sumanasekera, G. U.; Sunkara, M. K., Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films. Nanotechnology 2007, 18 (28), 285501. 57. Zhu, C. L.; Chen, Y. J.; Wang, R. X.; Wang, L. J.; Cao, M. S.; Shi, X. L., Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sensors and Actuators B: Chemical 2009, 140 (1), 185-189. 58. Choi, K. J.; Jang, H. W., One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues. Sensors 2010, 10 (4), 4083-4099.
摘要: 本實驗以兩階段水熱法合成CeO2─WO3核/殼奈米線與WO3─CeO2核/殼奈米棒,第一階段先合成出CeO2奈米線與WO3奈米棒核心結構,然後在核心奈米結構表面合成WO3與CeO2外殼。藉由中斷實驗,我們仔細觀察CeO2奈米線在成長過程的結構演變來討論其成長機制。合成產物的形貌、結構及組成是利用SEM、XRD、TEM觀察與分析。另外,我們也將四種奈米結構製成氣體感測元件並量測對CO與NO2的氣體感測特性。實驗結果顯示,CeO2奈米線的成長是利用Ostwald ripening (OR)的機制,先在溶液中均質成核形成Ce(OH)3團聚顆粒,在高鹼性環境中氧化為Ce(OH)4,在高溫高壓下Ce(OH)4轉變為CeO2,伴隨顆粒溶解和再結晶的速率上升,促使CeO2沿著[110]方向異向生長成長成為奈米線。在氣體感測方面, WO3奈米棒對NO2表現出最佳的感測特性,接下來依序為CeO2─WO3核/殼奈米線、CeO2奈米線和WO3─CeO2核/殼奈米棒。對CO氣體,僅CeO2奈米線有感測效果,WO3奈米棒、CeO2─WO3核/殼奈米線與WO3─CeO2核/殼奈米棒則只有些微或沒有反應。
We synthesized CeO2-WO3 core/shell nanowires and WO3- CeO2 core/shell nanorods by a two-step hydrothermal method. The CeO2 nanowire and WO3 nanorod core structures were synthesized in the first step, and then the WO3 and CeO2 shell structures were deposited on the CeO2 and WO3 core nanostructures. The growth mechanism of CeO2 nanowires was investigated by observing the structure evolution during the synthesis process. The crystalline structures and morphologies of as-synthesized products were identified by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) analysis. In addition, gas sensors based on CeO2 nanowires, WO3 nanorods, CeO2-WO3 core/shell nanowires and WO3- CeO2 core/shell nanorods were fabricated and their gas sensing properties to different concentrations of CO and NO2 were measured. The results show that the formation of single-crystalline CeO2 nanowires is governed by the Ostwald ripening (OR) mechanism. Ce(OH)3 nuclei are formed by homogeneous nucleation as soon as the Ce3+ ions are mixed with NaOH. Ce(OH)3 will first oxidize into in the basic solution environment and then Ce(OH)4 will transfer to CeO2 nanopaticles under high temperature and pressure. The increase of dissolution and recrystallization rate will promote the anisotropic growth of CeO2 along the [110] direction and finally form CeO2 nanowires. For NO2, the WO3 nanorods exhibited the best sensitivity, while the WO3-CeO2 core/shell nanorods had lowest sensitivity. The sensitivities of CeO2 nanowires and CeO2-WO3 core/shell nanowires are in between WO3 nanorods and WO3-CeO2 core/shell nanorods. For CO, only CeO2 nanowires had noticeable sensitivity, while others had limited or no response.
其他識別: U0005-1907201222153300
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.