Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11331
標題: 以水熱法和濕式化學法合成五氧化二釩和摻雜氧化銅顆粒之五氧化二釩奈米線結構及其氣感特性
Synthesis and gas sensing properties of V2O5 and CuO doped V2O5 nanowires prepared by hydrothermal and chemical wet methods
作者: 簡柏崧
Jian, Bo-sung
關鍵字: 五氧化二釩
V2O5
奈米線
水熱法
氣體感測
nanowire
hydrothermal
gas sensor
出版社: 材料科學與工程學系所
引用: 1. Teoh, L. G.;Hon, Y.M.;Shieh, J.;Lai, W.H.;Hon, M.H., Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film. Sensors and Actuators B 96(2003),219-225. 2. Semancik, S.;Cavicchi, R.E., The growth of thin, epitaxial SnO2 films for gas sensing applications. Thin solid films 206(1991),81-87. 3. Duan, X.;Huang, Y.;Cui, Y,;Wang, J.;Liber, C.M., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Letters to Nature 409(2001),66-69. 4. Cao, C.;Hu, C.;Shen, W.;Wang, S.;Wang, S.;Wang, J.;Tian, Y., Fabrication of a novel heterostructure of Co3O4-modified TiO2 nanorod arrays and its enhanced photoelectrochemical property. Journal of alloys and compounds 550(2013),137-143. 5. Kang, M.S.;Lee, C.H.;Park, J.B.;Yoo, H.;Yi, G.C., Gallium nitride nanostructures for light-emitting diode applications. Nano Energy 1(2012),391-400. 6. Wang, T.S.;Wang, Q.S.;Zhu, C.L.;Ouyang, Q.Y.;Qi, L.H.;Li, C.Y.;Xiao, G.;Gao, P.;Chen, Y.J., Synthesis and enhanced H2S gas sensing properties of α-MoO3/CuO PN junction nanocomposite. Sensors and Actuators B: Chemical 171(2012),256-262 7. Park, S.;Ko, H.;An, S.;Lee, W.I.;Lee, S.;Lee, C., Synthesis and ethanol sensing properties of CuO nanorods coated with In2O3. Ceramics International 39(2013),5255-5262. 8. Ogawa, H.;Masahiro N.;Atsushi A., Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. Journal of Applied Physics 53(1982),4448-4455. 9. Kim, S.S.;Park, J.Y.;Choi, S.W.;Kim, H.S.;Na, H.G.;Yang, J.C.;Lee, C.;Kim, H.W., Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the Ga2Pd5 nanodot functionalization. international journal of hydrogen energy 36 (2011),2313-2319. 10. Shen, Y.;Yamazaki, T.;Liu, Z.;Meng, D.;Kikuta, T., Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires. Journal of Alloys and Compounds 488(2009),121-125.. 11. Haber, J.; Witko, M.;Tokarz, R., Vanadium pentoxide I. Structures and properties.Applied Catalysis A:General 157(1997),3-22. 12. Enjalbert, R.; Galy, J. A Refinement of the Structure of V2O5 Acta Crystallogr. Acta Cryst.(1986),C42,1469-1472. 13. Zavalij, Y.;Stanley Whittingham, M., Structural chemistry of vanadium oxides with open frameworks. Acta Cryst.(1999),B55,627-633. 14. Ping, L.;Se-Hee, L.;Cheong, H.M.;Tracy, C.E.;Pitts, J.R.;Smith, R.D., Stble Pd/V2O5 Optical H2 Sensor. Journal of The Electrochemical Society (2002),149(3),H76-H80. 15. Sudant, G.;Baudrin, E.;Dunn, B.;Tarascon, J.M., Synthesis and Electrochemical Properties of Vanadium Oxide Aerogels Prepared by a Freeze-Drying Process. Journal of The Electrochemical Society(2004), 151(5),A666-A671. 16. Spahr, M.E.;Stoschitzki-Bitterli, P.;Nesper, R.;Haas, O.;Novak, P., Vanadium Oxide Nanotubes. Journal of The Electrochemical Society(1999),146(8),2780-2783. 17. Sides, C.R.;Martin, C.R., Nanostructured Electrodes and the Low-Temperature Performance of Li-Ion Batteries. Advanced Materials (2005),125-128. 18. Capone, S.;Rella, R.;Siciliano, P.;Vasanelli, L., A comparsion between V2O5 and WO3 thin films as sensitive elements for NO detection. Thin Solid Films 350(1999),264-268. 19. Dhayal Raj, A.;Pazhanivel, T.;Suresh Kumar, P.;Mangalaraj, D.;Nataraj, D.;Ponpandian, N., Self assembled V2O5 nanorods for gas sensor. Current Applied Physics 10(2010),531-537. 20. Su, Q.;Huang, C.K.;Wang, Y.;Fan, Y.C.;Lu, B.A.;Lan, W.;Wang, Y.Y.;Liu, X.Q., Formation of vanadium oxides with various morphologies by chemical vapor deposition. Journal of Alloys and Compounds 475(2009), 518-523. 21. Cheah, Y.L.;Gupta, N.;Pramana, S.S.;Aravindan, D.;Wee, G.;Srinivasan, M., Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. Journal of Power Sources 196(2011),6465-6472. 22. Satishkumar, B.C.;Govindaraj, A.; Natha, M.;. Rao, C.N.R., Synthesis of metal oxide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry 10(2000),2115-2119. 23. Minglang, Y.;Xueqin, L.;Yuan, W.;Youbin, Z.;Jiawang, Z.;Mingyang, L.;Wei, L.;Qing, S., Gas sensing properties of p-type semiconducting vanadium oxide nanotubes. Applied Surface Science 258(2012)9554-9558 24. Asim, N.;Radiman, S.;Yarmo, M.A.;Banaye Golriz, M.S., Vanadium pentoxide : Synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous and Mesoporous Materials 120(2009),397-401. 25. Richard, I.W., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews 31(2002),230-238. 26. Ming, Z.;Haihong, Y.;Ke, Y., Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chemical Engineering Journal 188(2012),64-70. 27. Guicun, L.;Kun, C.;Hongrui, P.;Kezheng, C.;Zhikun, Z., Low-Valent Vanadium Oxide Nanostructures with Controlled Crystal Structures and Morphologies. Inorganic Chemistry 46(2007),5787-5790. 28. Liu, J.;Wang, X.;Peng, Q.;Li, Y., Vanadium Pentoxide Nanobelts :Highly Selective and Stable Ethanol Sensor Materials. Advanced Materials 17(2005),764-767. 29. Seraphin, B.O.;Aranovich, J.;Bougnot, J.;Fahrenbruch, L.;Fischer, H.;Gerischer, H.;Graff, K.;Savelli, M.;Sievers, A.J., Solar Energy Conversion:Solid-State Physics Aspects. Applied Physics 348(1979),36145-36150. 30. Oku, T.;Motoyoshi, R.;Fujimoto, K.;Akiyama, T.;Jeyadevan, B.;Cuya, J., Structures and photovoltaic properties of copper oxide/fullerene solar cells. Journal of Physics and Chemistry of Solids 72.11(2011): 1206-121. 31. Junod, A.;Eckert, D.;Triscone, G.;Muller, J.;Reichard, W., A study of the magnetic transitions in CuO : specific heat (1-330K), magnetic susceptibility and phonon density of states. Journal of Physics: Condensed Matter 1(1989),8021-8034. 32. Forsyth, J.B.;Brown, P.J.;Wanklyn, B.M., Magnetism in cupric oxide. Journal of Physics C: Solid State Physics 21(1988),2917-2929. 33. Jun, T.;Tomoki, M.;Norio, M.;Noboru, Y., CuO-SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B 9(1992), 197-203. 34. Ramgir, N.S.;Ganapathi, S.K.;Kaur, M.;Datta, N.;Muthe, K.P.;Aswal, D.K.;Gupta, S.K.;Yakhmi, J.V., Sub-ppm H2S sensing at room temperature using CuO thin films. Sensors and Actuators B 151(2010),90-96 . 35. Kim, H.;Jin, C.;Park, S.;Kim, S.;Lee, C., H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sensors and Actuators B 161(2012),594-599. 36. Jin, C.;Kim, H.;An, S.;Lee, C., Highly sensitive H2S gas sensor based on CuO-coated ZnSnO3 nanorods synthesized by thermal evaporation. Ceramics International 38(2012),5973-5978. 37. Shao, F.; Hoffmann, M. W. G., Prades, J. D., Zamani, R., Arbiol, J., Morante, J. R.;Varechkina, E.;Rumyantseva, M.;Gaskov, A.;Giebelhaus, I.;Fischer, T.;Mathur, S.;Hernandez-Ramirez, F., Heterostructured p-CuO (Nanoparticle)/n-SnO2(Nanowire) devices for Selective H2S detection. Sensors and Actuators B 181(2013),130-135 . 38. Mahato, T. H.;Singh, B.;Srivastava, A.K.;Parsad, G.K.; Srivastava, A.R.;Ganesan, K.; Vijayaraghavan, R., Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of sulphur mustard.Journal of hazardous materials 192(2011),1890-1895. 39. Whittingham, M. S.;Guo, J.D.;Chen, R.;Chirayil, T.;Janauer, G.;Zavalij, P., The hydrothermal synthesis of new oxide materials. Solid State Ionics 75 (1995), 257-268. 40. Pozarnsky, G.A.;McCormick, A.V, 51V NMR and EPR Study of Reaction Kinetics and Mechanisms in V2O5 Gelation by Ion Exchange of Sodium Metavanadate Solutions. Chemistry of materials 6.4 (1994):,380-385. 41. Alonso, B,; Livage, J., Synthesis of Vanadium Oxide Gels from Peroxovanadic Acid Solutions: A 51 V NMR Study. Journal of Solid State Chemistry 148.1 (1999), 16-19. 42. Zhang, J.; Huang, F.;Lin, Z., Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2.1 (2010), 18-34. 43. Jr, W.A.;Ribeiro, C.;Leite, E.R.;Mastelaro, R., Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions. Journal of Crystal Growth 312.23 (2010):,3555-3559. 44. He, X.;Li, J.;Gao, X., Effect of V2O5 coating on NO2 sensing properties of WO 3 thin films. Sensors and Actuators B: Chemical 108.1 (2005), 207-210. 45. Rella, R.;Siciliano, P.;Cricenti, A.;Generosi, R.;Girasole, M.;Vanzetti, L.;Anderle, M.; Coluzza, C., A study of physical properties and gas-surface interaction of vanadium oxide thin films. Thin Solid Films 349.1 (1999), 254-259. 46. Thong, L.V.;Ngoc Loan, L.T.;Hieu, N.V., Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sensors and Actuators B: Chemical150.1 (2010),112-119.
摘要: 本實驗以兩階段合成法製備CuO-V2O5奈米異質結構,第一階段先藉由水熱法合成出V2O5奈米線,第二階段再利用濕式化學法將CuO奈米顆粒鑲嵌於V2O5奈米線上。藉由中斷實驗,我們仔細觀察V2O5奈米線在實驗過程中結構的演變並討論它的成長機制。實驗中合成產物的形貌、結構及組成將使用SEM、XRD、TEM儀器觀察與分析。此外也將這兩種奈米線製作成氣體感測元件並對CO與NO2氣體做感測。結果顯示,V2O5奈米線的成長是藉由OA(oriented attachment)的機制成長。先在溶液中成核形成顆粒,再成長為棒狀結構,藉著旋轉尋求表面能最低的位置而結合,最後再沿著[110]異向生長成V2O5奈米線。在氣體感測特性方面,較高溫時能夠藉由熱活化的作用,增強奈米線氣感元件對待測氣體的感測能力。另外,CuO-V2O5奈米異質結構因為具有p-n junction以及較大的比表面積,相較之下會比純的V2O5奈米線有更優相的感測能力。
In this experiment, CuO-V2O5 heterogeneous nanostructures was synthesized by a two-stages chemical process where V2O5 nanowires were synthesized by using a hydrothermal method in the first stage, and then CuO nanoparticles were decorated on the surface of V2O5 nanowires through wet-chemical reaction in the second stage. The morphologies. compositions, and crystalline structures of the as-synthesized products were characterized by SEM, XRD, and TEM. To study the growth mechanism of V2O5 nanowires, the synthesis process was terminated at different growth times and the corresponding morphologies and structures were examined. Gas sensors based on V2O5 nanowires and CuO-V2O5 heterogeneous nanostructures were fabricated to investigate their gas sensing properties to CO and NO2 gases. The experimental results show that the growth mechanism of V2O5 nanowires is deduced to be the oriented attachment (OA) mechanism. The V2O5 nanoparticles will first nucleate in the precursor solution and then grow into nanorods. In the meantime, the growing nanorods will rotate each other to find the orientation with the lowest surface energy and attach together to from V2O5 nanowires oriented along the [110] direction. At the aspect of gas sensing properties, the gas sensitivities of the V2O5 nanowires can be enhanced as the operation temperature is increase due to the thermal activation effect. The CuO-V2O5 heterogeneous nanostructures have a better gas sensing performance than the bare V2O5 nanowires because of their larger surface-to-volume ratios and the existence of extra p-n junctions.
URI: http://hdl.handle.net/11455/11331
其他識別: U0005-0108201318563500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108201318563500
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.