Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11333
標題: 以濕式化學法合成PMMA-Ni-Au核殼複合微球與其電阻率特性之研究
Chemical Synthesis and Electrical Resistivity of PMMA-Ni-Au Core-Shell Composite Microspheres
作者: 林冠儒
Lin, Kuan-Ju
關鍵字: 無電電鍍法
Electroless plating
氧化還原金屬置換
PMMA


複合微球
Redox-transmetalation
PMMA
Nickel
Gold
Composite microspheres
出版社: 材料科學與工程學系所
引用: [1] T. Ji, V. G. Lirtsman, Y. Avny, and D. Davidov, ‘‘Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-Shell/Magnetic Beads’’, Advanced Materials, 13, 1253-1256 (2001). [2] P. Tierno, and W. A. Goedel, ‘‘Using Electroless Deposition for the Preparation of Micron Sized Polymer/Metal Core/Shell Particles and Hollow Metal Spheres”, Journal of Physical Chemistry B, 110, 3043-3050 (2006). [3] H. Guo, Z. Qin, J. Wei, and C. Qin, ‘‘Synthesis of Novel Magnetic Spheres by Electroless Nickel Coating of Polymer Spheres”, Surface and Coatings Technology, 200, 2531-2536 (2005). [4] W. L. Liu, S. H. Hsieh, T. K. Tsai, and W. J. Chen, ‘‘Deposition of Electroless Ni on Micro-Sized Acrylic Spheres”, Journal of Materials Science, 42, 2121-2125 (2007). [5] D. O. Kim, W. I. Shon, J. H. Jin, and S. H. Oh, ‘‘Electroless Ni Plating of Monodisperse Polymer Particles”, Polymer Korea, 31, 184-188 (2007). [6] W. R. Lee, M. G. Kim, J. R. Choi, J. I. Park, S. J. Ko, S. J. Oh, and J. Cheon, ‘‘Redox-Transmetalation Process as A Generalized Synthetic Strategy for Core-Shell Magnetic Nanoparticles”, Journal of The American Chemical Society, 127, 16090-16097 (2005). [7] J. I. Park, and J. Cheon, ‘‘Synthesis of ‘‘Solid Solution‘‘ and ‘‘Core-Shell” Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions”, Journal of the American Chemical Society, 123, 5743-5746 (2001). [8] G. Decher, ‘‘Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites” Science, 277, 1232-1237 (1997). [9] F. Caruso, H. Lichtenfeld, M. Giersig, and H. MoEhwald, ‘‘Electrostatic Self-Assembly of Silica Nanoparticle - Polyelectrolyte Multilayers on Polystyrene Latex Particles”, Journal of the American Chemical Society, 120, 8523-8524 (1998). [10] F. Caruso, R. A. Caruso, H. Mohwald ‘‘Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating”, Science, 282, 1111-1114 (1998). [11] F. Caruso, ‘‘Nanoengineering of Particle Surfaces”, Advanced Materials, 13, 11-22 (2001). [12] F. Caruso, X. Shi, R. A. Caruso, and A. Susha, ‘‘Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles”, Advanced Materials, 13, 740-744 (2001). [13] I. Pastoriza-Santos, B. Scholer, and Frank Caruso, ‘‘Core-Shell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins”, Advanced Functional Materials, 11, 122-128 (2001). [14] J. R. Silva, N. C. de Souza, O. N. Oliveira Jr., ‘‘Adsorption Kinetics and Charge Inversion in Layer-By-Layer Films From Nickel Tetrasulfonated Phthalocyanine and Poly(Allylamine Hydrochloride)”, Journal of Non-Crystalline Solids, 356, 937-940 (2010). [15] Z. J. Liang, A. S. Susha, F. Caruso, ‘‘Metallodielectric Opals of Layer-By-Layer Processed Coated Colloids”, Advanced Functional Materials, 14, 1160-1164 (2002). [16] L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, ‘‘Metal Nanoshells”, Annals of Biomedical Engineering, 34, 15-22 (2006). [17] H. Cong, R. Toftegaard, J. Arnbjerg, and P. R. Ogilby, ‘‘Silica-Coated Gold Nanorods with a Gold Overcoat: Controlling Optical Properties by Controlling the Dimensions of a Gold-Silica-Gold Layered Nanoparticle”, Langmuir, 26, 4188–4195 (2010). [18] P. Wu, H. Zhang, N. Du, L. Ruan, and D. Yang, ‘‘A Versatile Approach for the Synthesis of ZnO Nanorod-Based Hybrid Nanomaterials via Layer-By-Layer Assembly”, Journal of Physical Chemistry C, 113, 8147-8151 (2009). [19] D. Srivastava, T. R Hendricks, and I. Lee, ‘‘Step-Edge Like Template Fabrication of Polyelectrolyte Supported Nickel Nanowires”, Nanotechnology, 18, 245305 (2007). [20] N. Du, H. Zhang, J. Yu, P. Wu, C. Zhai, Y. Xu, J. Wang, and D. Yang, ‘‘General Layer-By-Layer Approach to Composite Nanotubes and Their Enhanced Lithium-Storage and Gas-Sensing Properties”, Chemistry of Materials, 21, 5264-5271 (2009). [21] T. R. Hendricks, E. E. Dams, S. T. Wensing, and I. Lee, ‘‘Effects of Catalyst Introduction Methods Using PAMAM Dendrimers on Selective Electroless Nickel Deposition on Polyelectrolyte Multilayers”, Langmuir , 23, 7404-7410 (2007). [22] C. J. McDonald, M. J. Devon, ‘‘Hollow Latex Particles: Synthesis and Applications”, Advances in Colloid and Interface Science, 99, 181-213 (2002). [23] H. T. Oyama, R. Sprycha, Y. Xie, R. E. Partch, and E. Matijevic, ‘‘Coating of Uniform Inorganic Particles with Polymers”, Journal of Colloid And Interface Science, 160, 298-303 (1993). [24] R Partch, S. G. Gangolli, E Matijevic, W Cai, and S Arajs. ‘‘Conducting polymer composites. I. Surface-induced polymerization of pyrrole on iron(III) and cerium(IV) oxide particles”, Journal of Colloid and Interface Science, 144, 27-35 (1991). [25] A. S. Susha, F. Caruso, A. L. Rogach, G. B. Sukhorukov, A. Kornowski, H. MoEhwald, M. Giersig, A. EychmuEller, and H. Weller, ‘‘Formation of Luminescent Spherical Core-Shell Particles by The Consecutive Adsorption of Polyelectrolyte and Cdte(S) Nanocrystals on Latex Colloids”, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 163, 39-44 (2000). [26] L. Quaroni, and G. Chumanov ‘‘Preparation of Polymer-Coated Functionalized Silver Nanoparticles”, Journal of the American Chemical Society, 121, 10642-10643 (1999). [27] M. Okubo, R. Takekoh, J. Izumi, T. Yamashita, ‘‘Morphology of Micron-Sized Monodispersed Poly(Butyl Methacrylate)/Polystyrene Composite Particles Produced by Seeded Dispersion Polymerization”, Colloid and Polymer Science, 277, 972-978 (1999). [28] L. M. Liz-MarzaAn, M. Giersig, and P. Mulvaney ‘‘Synthesis of Nanosized Gold-Silica Core-Shell Particles”, Langmuir , 18, 4329-4335 (1996). [29] G. X. Wang, N. Li, H. L. Hu, Y. C. Yu, ‘‘Process of Direct Copper Plating on ABS Plastics”, Applied Surface Science, 253, 480-484 (2006). [30] A. G. Dong, a Y. J. Wang, Y. Tang, N. Ren, W. L. Yang, Z. Gao, ‘‘Fabrication of Compact Silver Nanoshells on Polystyrene Spheres through Electrostatic Attraction”, Chemical Communications, 4, 350-351 (2002). [31] M. Schlesinger, ‘‘Electroless Deposition of Nickel”, Modern Electroplating, Chapter 18, 447-458 (2010). [32] O. A. Sadik, H. Xu, and A. Sargent, ‘‘Multi-Electron Transfer Mechanism of Dimethylamine Borane in Electroless Gold Deposition”, Journal of Electroanalytical Chemistry, 583, 167-175 (2005). [33] H. Kupfer, G. Hecht, and R. Ostwald, ‘‘Ecologically Important Metallization Processes for High-Performance Polymers”, Surface and Coatings Technology, 112, 379-383 (1999). [34] H. Esrom, R. Seebock, M. Charbonnier, and M. Romand, ‘‘Surface Activation of Polyimide with Dielectric Barrier Discharge for Electroless Metal Deposition”, Surface and Coatings Technology, 125, 19-24 (2000). [35] M. Charbonnier, and M. Romand, ‘‘Polymer Pretreatments for Enhanced Adhesion of Metals Deposited by the Electroless Process”, International Journal of Adhesion and Adhesives, 23, 277-285 (2003). [36] Y. C. Chen, R. L. Liu, C. P. Chang, X. L. Chen ,H. J. Shu, and M. D. Ger, ‘‘A Facial Microwave-Assisted Polyol Activation Process for Fabrication of Ni@PMMA Microspheres”, Materials Research Bulletin , 46, 1163-1167 (2011). [37] A. Warshawsky, and D. A. Upson, ‘‘Zerovalent Metal Polymer Composites. I.Metallized Beads”, Journal of Polymer Science Part A-Polymer Chemistry, 27, 2963-2994 (1989). [38] J. G. Park, J. W. Kim, S. G. Oh, and K. D. Suh, ‘‘Monodisperse Polymer/Metal Composite Particles by Electroless Chemical Deposition: Effect of Surface Functionality of Polymer Particles”, Journal of Applied Polymer Science, 87, 420-424 (2003). [39] J. B. Jun, M. S. Seo, S. H. Cho, J. G. Park, J. H. Ryu, and K. DoSuh ‘‘Synthesis of Monodisperse Nickel-Coated Polymer Particles by Electroless Plating Method Utilizing Functional Polymeric Ligands”, Journal of Applied Polymer Science, 100, 3801-3808 (2006). [40] B. H. Jun, J. H. Kim, H. Park, J. S. Kim, K. N. Yu, S. M. Lee, H. Choi, S. Y Kwak, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, ‘‘Surface-Enhanced Raman Spectroscopic-Encoded Beads for Multiplex Immunoassay”, Journal of Combinatorial Chemistry, 9, 237-244 (2007). [41] Y. C. Chen, R. L. Liu, X. L. Chen, H. J. Shu, and M. D. Ger, ‘‘Microwave-Assisted Activation for Electroless Nickel Plating on PMMA Microspheres”, Applied Surface Science, 257, 6734-6740 (2011). [42] Y. M. Jeon and M. S. Gong, ‘‘Preparation of Silver/PMMA Beads via the in Sito Reduction of a Silver Alkylcarbamate Complex”, Macromolecular Research, 17, 2-4 (2009). [43] L. Wang, and D. Chen, ‘‘A One-Pot Approach to the Preparation of Silver-PMMA "Shell-Core" Nanocomposite”, Colloid and Polymer Science, 284, 449-454 (2006). [44] J. Chen, F. Zeng, S. Wu, J. Su, J. Zhao, and Z. Tong, ‘‘A Facile Approach for Cupric Ion Detection in Aqueous Media Using Polyethyleneimine/PMMA Core–Shell Fluorescent Nanoparticles”, Nanotechnology, 20, 365502 (2009). [45] J. Wang, B. An, J. He, F. Wu, Y. Wu, ‘‘Preparation of Conductive Particles by Electroless Nickel Plating on Polystyrene Microsphere”, Electronics Packaging Technology, 1, 1-4 (2006). [46] O. Siiman, and A. Burshteyn, ‘‘Preparation, Microscopy, and Flow Cytometry with Excitation into Surface Plasmon Resonance Bands of Gold or Silver Nanoparticles on Aminodextran-Coated Polystyrene Beads”, Journal of Physical Chemistry B, 104, 9795-9810 (2000). [47] T. Cassagneau, and F. Caruso, ‘‘Contiguous Silver Nanoparticle Coatings on Dielectric Spheres”, Advanced Materials, 14, 732-736 (2002). [48] A. Garcia, T. Berthelot, P. Viel, A. Mesnage, P. Je’gou, F. Nekelson, S. Roussel, and S. Palacin, ‘‘ABS Polymer Electroless Plating through a One-Step Poly(Acrylic Acid) Covalent Grafting”, ACS Applied Materials and Interfaces, 2, 1177-1183 (2010). [49] D. Chen, J. Li, C. Shi, X. Du, N. Zhao, J.Sheng, and S. Liu, ‘‘Properties of Core-Shell Ni-Au Nanoparticles Synthesized through a Redox-Transmetalation Method in Reverse Microemulsion”, Chemistry of Materials, 19, 3399-3405 (2007). [50] I. T. Jeon, M. K. Cho, J. W. Cho, B. H. An, J. H. Wu, R. Kringel, D. S. Choi, and Y. K. Kim, ‘‘Ni–Au Core–Shell Nanowires: Synthesis, Microstructures, Biofunctionalization, and The Toxicological Effects on Pancreatic Cancer Cells”, Journal of Materials Chemistry, 21, 12089-12095 (2011). [51] D. Chen, S. Liu, J. Li, N. Zhao, C. Shi, X. Du, and J. Sheng, ‘‘Nanometre Ni and Core/Shell Ni/Au Nanoparticles with Controllable Dimensions Synthesized in Reverse Microemulsion”, Journal of Alloys and Compounds, 475, 494-500 (2009). [52] Y. Min, K. Zhang, Y. Chen, Y. Zhao, and Y. Zhang, ‘‘Simple Method to Synthesis Nickel-Gold Composition Nanostructure and Their Applications”, Materials Chemistry and Physics, 119, 11-14 (2010). [53] J. H. Lee, J. S. Oh, P. C. Lee, D. O. Kim, Y. Lee, and J. D. Nam, ‘‘Fabrication of Nickel/Gold Multilayered Shells on Polystyrene Bead Cores by Sequential Electroless Deposition Processes”, Journal of Electronic Materials, 37, 1648-1652 (2008). [54] H. Y. Lin, and Y. W. Chen, ‘‘Low-Temperature CO Oxidation on Au/FexOy Catalysts”, American Chemical Society, 44, 4569-4576 (2005). [55] A. Tegou, S. Papadimitriou, S. Armyanov, E. Valova, G. Kokkinidis, and Sotiropoulos, ‘‘Oxygen Reduction at Platinum- and Gold-Coated Iron, Cobalt, Nickel and Lead Deposits on Glassy Carbon Substrates”, Journal of Electroanalytical Chemistry, 623, 187-196 (2008). [56] S. Papadimitriou, A. Tegou, E. Pavlidou, S. Armyanov, E. Valova, G. Kokkinidis, and S. Sotiropoulos, ‘‘Preparation and characterisation of platinum- and gold-coated copper, iron, cobalt and nickel deposits on glassy carbon substrates”, Electrochimica Acta, 53, 6559-6567 (2008). [57] F. Bao, J. F. Li, B. Ren, J. L. Yao, R. A. Gu, and Z. Q. Tian, ‘‘Synthesis and Characterization of Au@Co and Au@Ni Core-Shell Nanoparticles and Their Applications in Surface-Enhanced Raman Spectroscopy”, Journal of Physical Chemistry C, 112, 345-350 (2008). [58] ‘‘Standard Practice for Measuring Sheet Resistance of Thin Film Conductors for Flat Panel Display Manufacturing Using a Four-Point Probe Method 1”, American Society for Testing and Materials, Designation: F1711 – 96 (2008). [59] Y. Okinaka, and M. Kato, ‘‘Electroless Deposition of Gold’’, Modern Electroplating, Chapter 21, 483-498 (2010).
摘要:   本研究以濕式化學法合成PMMA-Ni-Au核殼複合微球,吾人嘗試藉由靜電吸引方式,依序在聚甲基丙烯酸甲酯 (Polymethylmethacrylate, PMMA)表面吸附聚氫氧化氯烯丙胺 (Poly allylamine hydrochloride, PAH)及聚丙烯酸 (Poly acrylic acid, PAA)之聚電解質分子,對PMMA微球施予改質處理,並調整溶液酸鹼度(pH值)與聚電解質濃度,改變PMMA之表面電位,以介面電位分析儀 (Laser Doppler Velocimetry, LDV)分析後發現當PAH及PAA之pH值分別為8及4,且添加濃度皆固定為0.022 mM時,具有最強之表面電位:+45及-35 mV;吾人將改質後之PMMA微球為核,利用無電電鍍法將金屬鎳披覆於PMMA微球表面,形成PMMA-Ni核殼微球,再藉由調整二甲氨基甲硼烷 (Dimethylamine borane, DMAB)之濃度,吾人以X光繞射分析儀 (X-ray Diffraction, XRD)及場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscopy, FE-SEM)分析發現,隨著DMAB濃度由0.017 M增加至0.85 M,其金屬鎳之結晶性雖然會隨之降低,但是鎳殼層披覆之完整性將會隨之上升,並進一步藉由四點探針(Four Point Probe)量測得知,當DMAB濃度由0.017 M增加至0.85 M時,其體積電阻率會由8269 Ω-cm大幅度地下降至2.61x10-1 Ω-cm;進一步將PMMA-Ni核殼複合微球作為模板,四氯金酸 (Hydrogen tetrachloroaurate(III) trihydrate, HAuCl4˙3H2O)為前驅鹽,於水溶液環境以氧化還原金屬置換技術(Redox-transmetalation, RTM)將金披覆於PMMA-Ni核殼粒子,可得PMMA-Ni-Au核殼複合微球,吾人藉由聚焦離子束電子顯微鏡(Focused Ion Beam, FIB)觀察PMMA-Ni-Au核殼複合微球之斷面結構,其金屬鎳、金殼層之厚度分別為100及200 nm,且PMMA微球與鎳殼層以及金殼層與鎳殼層間之介面處皆為完整且緻密的連續面。但是吾人發現當鍍金製程之pH=2時,無法於PMMA-Ni球體表面形成完整的金殼層外,亦會腐蝕原有的金屬鎳層;當pH值上升到6至9時, PMMA外表層皆具有鎳、金之雙層結構,由四點探針量測得知,其體積電阻率由pH值6至9依序為1.96x10-1Ω-cm、3.12x10-2 Ω-cm、4.78x10-2 Ω-cm、2.16x10-1 Ω-cm,且金殼層表面形貌影響體積電阻率甚大。吾人將HAuCl4濃度由13 mM增加至39 mM時,其體積電阻率由3.11x10-2 Ω-cm上升至8.25x10-1 Ω-cm,並由SEM得知,金殼層表面形貌產生許多額外凸起金瘤(Nodule),使PMMA-Ni-Au表面粗糙度和孔隙度明顯增大,進而提高體積電阻率;另以重複鍍金製程的方式改善之,發現經過第二次鍍金製程後之PMMA-Ni-Au核殼複合微球,其體積電阻率將由3.11 x10-2 Ω-cm下降至1.46 x10-2 Ω-cm,但在經過第三次鍍金製程後體積電阻率並無明顯變化,為1.72 x10-2 Ω-cm。
  Poly(methyl methacrylate)-nickel-gold (PMMA-Ni-Au) core-shell composite microspheres have been prepared through chemical routes. By using electrostatic attraction, polyelectrolytes such as cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) were adsorbed on PMMA surface sequentially in water. The zeta potential of PMMA was changed by adjusting solution pH and concentration of the polyelectrolytes. The zeta potential was at +45 and -35 mV after the adsorption of PAH and PAA at pH of 8 and 4, respectively. Both of the PAH and PAA concentrations were held at 0.022 mM. Ni shell was coated on the PMMA beads via electroless plating. The crystallinity of Ni was tailored by adjusting concentration of dimethylamine borane (DMAB) as the reducing agent. Over the DMAB concentrations examined (0.017 to 0.85 M), increasing the DMAB concentration resulted in a reduced crystallinity while the Ni shell was more complete. Furthermore, bulk electrical resistivity of the PMMA-Ni beads decreased from 8269 to 2.61x10-1 Ω-cm when the DMAB concentration increased from 0.017 to 0.85 M. The PMMA-Ni-Au core-shell composite microspheres were synthesized via redox-transmetalation method in water with the PMMA-Ni beads served as template and hydrogen tetrachloroaurate(III) trihydrate (HAuCl4˙3H2O) as the Au precursor. The interface of the PMMA-Ni-Au composite microspheres was observed by focused ion beam (FIB) microscopy; from which, the thickness of Ni and Au layers were 100 and 200 nm, respectively. Adhesive and continuous interface was found between PMMA and Ni layer, so as that between Ni and Au layer. However, the encapsulation of PMMA-Ni microspheres by the Au layer was found unsuccessful at pH=2. The PMMA spheres were successfully coated by Ni and Au double layers at pHs between 6 to 9. The resistivity from pH of 6, 7, 8, and 9 was 1.96x10-1, 3.12x10-2, 4.78x10-2, and 2.16x10-1 Ω-cm, respectively. This revealed that the resistivity was mostly influence by the solution pH. Au nodule was found when the concentration of HAuCl4 was increased from 13 to 39 mM. The Au surface became rough and porous, and the resistivity accordingly increased from 3.11x10-2 to 8.25x10-1 Ω-cm. Another way to improve the resistivity was attempted by repeating the Au coating process. After repeating the Au process twice, the resistivity decreased from 3.11 x10-2 Ω-cm to 1.46 x10-2 Ω-cm. However, no apparent difference was found when the coating was increased from twice to three times.
URI: http://hdl.handle.net/11455/11333
其他識別: U0005-2108201313195200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201313195200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.