Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11335
標題: 以粉末冶金法製備BaGaGe晶籠材料及其熱電特性研究
The Preparation and Thermoelectric Properties of The BaGaGe Clathrates Prepared by Powder Metallurgy
作者: 蔡雨儒
Tsai, Yu Ru
關鍵字: 熱電材料
thermoelectric matericals
BaGaGe 晶籠
電弧熔煉法
粉末冶金法
密度
熱電優值
BaGaGe clathrate
arc melting
powder metallurgy
density
figure of merit
出版社: 材料科學與工程學系所
引用: 1. S. Jacobsson and A. Johnson, “The diffusion of renewable energy technology:an analytical framework and key issues for research, ” Energy Policy, 28 (2000) 625. 2. G. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe CRC, Boca Raton, 1995, p. 7. 3. Seebeck, T.J. “Magnetic polarization of metals and minerals,” Abhandlungen der Deutschen Akademie der Wissenchaften zu berlin,(1822)p. 265. 4. J. C. Peltier, “Nouvelles experiences sur la caloricite des courans electrique,” Annales de Chimie et de Physique 56(1834)371. 5. 朱旭山,「熱電材料與元件之發展與應用」,工業材料雜誌,220期,(2005)第93-103頁。 6. 朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,22期,(2004)第78-89頁。 7. 大紀元2011年05月25日訊。 8. J. G. Haidar, J. I. Ghojel, “Waste Heat Recovery from the Exhaust of Low-Power Diesel Engine Using Thermoelectric Generators,” Proceedings of the 20th International Conference on Thermoelectrics, ICT, June 08, 2001, pp 413. 9. Terry M. Tritt, “Holey and Unholey Semiconductors,” Science: 5 February 1999, 804-805. 10. D. M. Rowe, “CRC Handbook of Thermmoelectric,” CRC Press Boca Raton Lonton New York Washington,(1995). 11. G. S. Nolas, G. A. Slack, J. L. Cohn and S. B. Schujman, “The next generation of thermoelectric materials,” Proceedings of the 17th International Conference on Thermoelectric,(1998)294. 12. J. P. Fleurial, A. Borshchevsky, T. Caillat and R. Ewell, “New materials and devices for thermoelectric applications,” Energy Conversion Engineering Conference,(1997)1080. 13. V. I. Fistul, “Heavily Doped Semiconductors,” Plenum, New York, (1969). 14. D. M. Rowe, and C. M. Bhandari, “Modern Thermoelectrics,” Holt Saunders, London,(1983). 15. 吳孟奇,洪勝富,連振炘,龔正,吳忠義,半導體元件,東華書局,(2000),第296-334頁。 16. 劉恩科、朱秉升、羅晉生編著,嚴考豐編修,「半導體物理學(第六版)」,新文京開發出版股份有限公司,(2006),第470-471頁。 17. C. M. Bhandari and D. M. Rowe, “Thermal Conduction in Semiconductors,” Wiley Eastern Limited,New Delhi,(1988)59. 18. 熊聰,唐新峰,「I –型鍺基籠合物 A8II B16IIIB30IV 的合成及熱電性能研究」,武漢理工大學新材所,(2006),第16頁。 19. M. Jonson and G. D. Mahan, “Mott’s formula for the thermopower and the Wiedemann-Franz law,” Phys. Rev. B, 21(1980)4223. 20. 伍祖璁、黃錦鍾譯著,German原著,「粉末冶金(初版)」,高立圖書有限公司,(2000),第六章。 21. K. Fujita, T. Mochida and K. Nakamura, “High-temperature thermoelectric properties of NaXCoO2-δ single crystals” Jpn. J. Appl. Phys. 40(7)(2001)4644. 22. L. Chen, “Barium-Filled Skutterudite: A High Performance n-Type Thermoelectric Material,” Key Eng. Mater. 224-226(2006)197. 23. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C.Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzides, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High figure of Merit,” Science 303(5659)(2004)818. 24. W. Zhang, L. Chen and X. Li, “High Temperature Thermoelectric Properties of AgPb18+XSbTe20,” Key Eng. Mater. 336-338 I(2007)857. 25. N. Okinaka and T. Akiyama, “Thermoelectric Properties of Nonstoichiometric TiO as a Promising Oxide Material for High-temperature Thermoelectric Conversion,” 24th ICT,(2005)34. 26. S. Sakurada and N. Shutoh, “Effect of Ti Substitution on the Thermoelectric Properties of (Zr,Hf)NiSn Half-Heusler Compounds,” Appl. Phys. Lett., 389(1-2)(2005)204. 27. Y. Z. Pei, L. D. Chen, W. Zhang, X. Shi, S. Q. Bai, X. Y. Zhao, Z. G. Mei and X. Y. Li, “Synthesis and thermoelectric properties of KyCo4Sb12,” Appl. Phys. Letters 89(2)(2006)221107. 28. J.-H. Kim, N. L. Okamoto, K. Kishida, K. Tanaka and H. Inui, “High thermoelectric performance of type-III clathrate compounds of the Ba-Ga-Ge system,” Acta Materialia, 54(2006)2057. 29. C. Mogens, J. Fanni and B. B. Iversen, “The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering,” Phys. B, 385-386(2006)505. 30. G. S. Nolas, J. L. Cohn, G. A. Slask and S. B. Schujman, “Semiconduction Ge clathrate : Promising candidates for thermoelectric applications,” Appl. Phys. Lett., 73(1998)178. 31. B. C. Sales, B.C. Chakoumakos, R. Jin, J. R. Thompson, D. Mandrus, “Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X=Eu, Sr, Ba) single crystals,” Phys. Rev. B. 63 (2001) 245113. 32. N. P. Blake, D.Bryan, S. Latturner, L. Mollnitz, G. D. Stucky and H. Metiu, “Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30 and Ba8In16Sn30,” J. Chem.Phys., 114(2001)10063. 33. R. Peter, “Formation of Clathrates,” IEEE(2005)443. 34. C.-C. Wilder, B. Horst, P. Silke, B. Michael, S. Frank and G. Yuri, “Ba6Ge25 : low-temperature Ge-Ge bond breaking during temperature-induced structure transformation,” J. Solid State Chem. 178(2005)715. 35. V. L. Kuznetsov, L. A. Kuznetsova, A.E. Kaliazin, D. M. Rowe, “Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds,” J. Appl. Phys. 87(2000)7871. 36. A. Saramat, G. Sevnsson, A. E. C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S. G. K. Williams, D. M. Rowe, J. D. Bryan and G. D. Stucky, “Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30,” J. Appl. Phys., 99 (2006) 023708. 37. 熊聰,唐新峰,祁瓊,鄧書康,張清傑,「Ⅰ型鍺基籠合物Ba8Ga16-xSbxGe30 的合成及熱電性能」,Acta Phys., 99 (2006) 023708. 38. X. Hou, Y. Zhou, L. Wang, W. Zhang, W. Zhang and L. Chen, “Growth and thermoelectric properties of Ba8Ga16Ge30 clathrate crystals,” J. Alloys Compd., 482(2009)544-547. 39. A. F. May, E. S. Toberer, A. Saramat and G. J. Snyder, “Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-XGe30+X,” Phys. Rev. B, 80(2009)125205. 40. S. Paschen, V. H. Tran, M. Baenitz, W. Carrillo-Cabrera, Yu. Grin, Steglich E. “Clathrate Ba6Ge25: Thermodynamic, magnetic, and transport properties,” Phys. Rev. B. 65 (2002) 134435. 41. H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza and L. Haming, “Preparation and Structure of a New Germanium Clathrate, Ba24Ge100,” J. Solid State Chem., 151(2000)117. 42. N. L. Okamoto, J.-H. Kim, K. Tanaka and H. Inui, “Splitting of guest atom sites and lattice thermal conductivity of type-I and type-III clathrate compounds in the Ba-Ga-Ge system,” Acta Mater 54(2006)5519-5528. 43. 張振崴,「以電弧熔煉法製備高熱電優值N型鋇鎵鍺合金與其真空熱壓後之熱電表現」,碩士論文,中興大學材料科學與工程學系研究所,(2009),第73頁。 44. 張郁雯,「不同Type I - III 相比例之BaGaGe晶籠合金之熱電特性研究」,碩士論文,中興大學材料科學與工程學系研究所,(2010),第81頁。 45. 陳宏孟,「以熱壓法製備不同成分比例BaGaGe合金之熱電特性研究」,(2011),第120頁。 46. 許文豪,「真空熱壓法製備N型及P型矽鍺合金於熱處理後之熱電特性分析」,(2008),第38頁。 47. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to ceramics” John Wiley & Sons(1991)847-904.
摘要: 本實驗以電弧熔煉法搭配粉末冶金法製備出成分穩定之 Type - I Ba-Ga-Ge 合金粉末,探討不同燒結時間、溫度對熱電特性之影響,並進一步找出最佳燒結參數。 由 ICP - MS 成分定量分析可得知,以粉末冶金法大量混合粉末方式可製備出成分均勻之 BaGaGe 合金粉末。從 X 光繞射分析可得知, BaGaGe 合金中是由 Type - I BaGaGe 及 Ge 相所組成。從密度量測可得知,隨著燒結時間增加,試片密度會隨之增加。另外,從電子顯微鏡影像中可得知,隨著燒結時間增加,緻密區域會增加。此結果與密度相符。 在熱電特性方面,所有BaGaGe 合金隨著溫度升高,電導率與Seebeck係數絕對值會上升,熱導率會下降,但在500 ℃ 之後 Seebeck係數絕對值會有下降或平緩的情形,而熱導率則是會提升,整體熱導率皆低於 1。另外,隨著燒結時間增加對 Seebeck 係數絕對值並無太大影響,而電導率會增加。由於在室溫與600 ℃ 之間可找出 Seebeck 係數與熱導率之極限值,因此燒結溫度800 ℃ 及燒結時間 64 hr 在環境溫度為 500 ℃ 可得最佳熱電優值,其值為 1.16。
In this study, Type - I Ba-Ga-Ge alloy powder with stable composition were prepared by arc melting and powder metallurgy. The effects of sintering time and temperature on thermoelectric properties were studied, and the optimal sintering parameters were found. Homogeneous BaGaGe alloy powder was successfully prepared. The X-ray diffraction analysis showed that the BaGaGe powder was composed of Type - I BaGaGe and Ge phases. The density of specimen increases with increasing sintering time. In consistency, from the observation of electron microscopy, more dense regions were found in sample with more sintering time. In general, the Seebeck coefficient and electrical conductivity increase while thermal conductivity decreases with increasing environmental temperature. However, the Seebeck coefficient decreases and thermal conductivity increases after 500 ℃, The overall thermal conductivity are less than 1 W/mk. The Seebeck coefficient changes not much but electrical conductivity increases with increasing sintering time. The optimal Seebeck coefficient and thermal conductivity can be found between room temperature and 600 ° C. The sample sintered at 800 ℃ for 64 hr has the optimal thermoelectric figure-of-merit 1.16 at 500 ℃.
URI: http://hdl.handle.net/11455/11335
其他識別: U0005-2607201218384200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201218384200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.