Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11339
標題: 以電漿電解氧化法於Ti/Si基材上製備鈦酸鋇膜及其特性研究
Synthesis and characterization of barium titanate films on Ti/Si by plasma electrolytic oxidation
作者: 蔡汶榆
Tsai, Wen-Yu
關鍵字: 電漿電解氧化法
Plasma electrolytic oxidation
鈦酸鋇
鈦膜
barium titanate
Ti/Si
出版社: 材料科學與工程學系所
引用: 1. Lide, David R, CRC handbook of chemistry and physics, Baker & Taylor Books, London, (2007). 2. 汪建民,陶瓷技術手冊(上),中華民國粉末冶金協會,第十三章:介電陶瓷(傅勝利),第409~413頁,民國八十三年。 3. J. Schreckenbach, F. Schlotting, G. Marx, W.M. Kriven, O.O. Popoola, M.H. Jilavi, and S.D. Brown, “Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers,” J. Mater. Res. 14 (1999) 1437. 4. 伍祖璁,鈦酸鋇膜電化學陽極氧化法之製備、微結構及特性分析,國立中興大學材料科學與工程學系博士論文,(2002)。 5. G.H. Heartling, “Ferroelectric thin films for electronic applications“, J. Vac. Sci. Technol. A 9 (1991) 414. 6. V.P. Dravid, H. Zhang, L.A. Wills, and B.W. Wessels, “On the microstructure, and dielectric function of BaTiO3 MOCVD thin films,” J. Mater. Res. 9 (1994) 426. 7. K. Suzuki, and K. Kijima, “Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD,” J. Alloys Compd. 419 (2006) 234. 8. B. Lee, and J. Zhang, “Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powder by an aqueous sol-gel process,” Thin Solid Films 388 (2001) 107. 9. P. Bendale, S. Venigalla, J.R. Ambrose, E.D. Verink. Jr., and J.H. Adair, “Preparation of barium titanate films at 55°C by an electrochemical method,” J. Am. Ceram. Soc. 76 (1993) 2619. 10. N. Ishizawa, H. Banno, M. Hayashi, S.E. Yoo, and M. Yoshimura, “Preparation of BaTiO3 and SrTiO3 polycrystalline thin films on flexible polymer film substrate by hydrothermal method,” Jpn. J. Appl. Phys. 29 (1990) 2467. 11. M. E. Pilleux, and V. M. Fuenzalida, “Hydrothermal BaTiO3 films on silicon : morphological and chemical characterization,” J. Appl. Phys. 74 (1993) 4664. 12. R.R. Bacsa, J.P. Dougherty, and L.J. Pilione, “Low-temperature synthesis of BaTiO3 thin films on silicon substrates by hydrothermal reaction,” Appl. Phys. Lett. 63 (1993) 1053. 13. W. Xu, L. Zheng, H. Xin, and C. Lin, “Hydrothermal BaTiO3 thin films on Ti-covered silicon: characterization and Growth Mechanism,” J. Electrochem. Soc. 143 (1996) 1133. 14. E. Shi, C.R. Cho, M.S. Jang, and H.J. Kim, “Structural and electrical properties of BaTiO3 thin films on Si (100) substrate by hydrothermal synthesis,” Jpn. J. Appl. Phys. 33 (1994) 4984. 15. E. Shi, C.R. Cho, M.S. Jang, and H.J. Kim, “The formation mechanism of barium titanate thin film under hydrothermal conditions,” J. Mater. Res. 9 (1994) 2914. 16. C.R. Cho, M.S. Jang, S.Y. Jeong, S.J. Lee, and B.M. Lim, “Ferroelectric properties of hydrothermally prepared BaTiO3 thin films on Si (100) substrates by low-temperature processing,” Mater. Lett. 23 (1995) 203. 17. C.K. Tan, G.K. L. Goh, D.Z. Chi, A.C.W. Lu, and B.K. Lok, “Hydrothermal growth of BaTiO3 thin films on printed circuit boards for integral capacitor applications,” J. Electroceram. 16 (2006) 581. 18. P.-H. Chan and F.-H. Lu, “Low temperature hydrothermal synthesis and the growth kinetics of BaTiO3 films on TiN/Si, Ti/Si, and bulk -Ti substrates,” J. Electrochem. Soc. 157 (2010) G130. 19. M. Hayashi, N. Ishizawa, S.E. Yoo and M. Yoshimura, “Preparation of barium titanate thin film on titanium-deposited glass substrate by hydrothermal-electrochemical method, ” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 98 (1990) 930. 20. P.-H. Chan and F.-H. Lu, “Low-temperature hydrothermal-galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates,” Thin Solid Film 517 (2009) 4782E. 21. S.V. Gnedenkov, P.S. Gordienko, O.A. Khrisanfova, T.M. Scorobogatova, and S.L. Sinebrukhov, “Formation of BaTiO3 coatings on titanium by microarc oxidation method,” J. Mater. Sci. 37 (2002) 2263. 22. C.-T. Wu and F.-H. Lu, “Electrochemical deposition of barium titanate films using a wide electrolytic voltage range,” Thin Solid Films 398 (2001) 621. 23. C.-T. Wu and F.-H. Lu, “Corrosion resisance of BaTiO3 films prepared by plasma electrolytic oxidation,” Surf. Coat. Technol. 166 (2002) 31. 24. F.-H. Lu, C.-T. Wu and C.-Y. Hung, “Barium titanate films synthesized by an anodic oxidation-based electrochemical method,” Surf. Coat. Technol. 153 (2002) 276. 25. C.-T. Wu and F.-H. Lu, “Synthesis of barium titanate films by plasma electrolytic oxidation at room electrolyte temperature,” Surf. Coat. Technol. 199 (2005) 225. 26. W.-F. Li, B. Han, J. Du, J.-H. Peng, and Y.-H. Gao, “Structural characteristics of BaTiO3 films prepared by microarc oxidation,” Trans. Nonferrous. Met. Soc. China 16 (2006) 1041. 27. 李文芳,韓冰和彭繼華,“微弧氧化法製備BaTiO3薄膜的微觀結構特徵分析,” 材料開發與應用,2006年第2期22卷33頁。 28. 李文芳,韓冰和彭繼華,“利用為弧氧化法製備四方相BaTiO3薄膜的結構特性及鐵電性能,” 動能材料,2007年第10期38卷1624頁。 29. 王敏,郭會勇,黃文波,李文芳和張果戈,“BaTiO3介電薄膜的微弧氧化製備及表面形貌,” 華南理工大學學報,2011年第11期39卷109頁。 30. J.-H. Peng, B. Han, W.-F. Li, J. Du, and F. L. Huang, “Synthesis of tetragonal BaTiO3 films on Ti substrate by micro-arc oxidation,” Trans. Nonferrous. Met. Soc. China 18 (2008) 1117. 31. J.-H. Peng, B. Han, W.-F. Li, J. Du, P. Guo, and D. Han, “Study on the microstructure evolution of BaTiO3 on titanium substrate during MAO,” Mater. Lett. 62 (2008) 1801. 32. H.J. Song, and Y.J. Park, “Fabrication of BaTiO3 films on titanium by microarc oxidation method and improvement of bioactivity by electric poling treating,” Mater. Lett. 61 (2007) 3473. 33. 曾珠玲,鄧煥平,楊家榮和呂福興,“以電漿電解氧化法於鈦薄膜底材上製備鈦酸鋇膜之特性及其抗腐蝕研究,” 防蝕工程,2012年第2期26卷99頁。 34. 曾珠玲,以電漿電解氧化法於TiN薄膜底材上製備鈦酸鋇膜及其特性研究,國立中興大學材料科學與工程學系碩士論文,(2011)。 35. 呂福興,曾珠玲,鄧煥平,利用電漿電解氧化法製備氧化膜的方法,2012,中華民國發明專利,申請號 100119639。 36. H. Takahashi, Y. Numamoto, J. Tani, and S. Tsuekawa, “Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering,” Jpn. J. Appl. Phys. 45 (2006) 7405. 37. J. Nowotny, and M. Rekas, “Positive temperature coefficient of resistivity for BaTiO3-based materials,” Ceram. Int. 17 (1991) 227. 38. J. Wang, H. Wan, and Q. Lin, “Properties of a nanocrystalline barium titanate on silicon humidity sensor,” Meas. Sci. Technol. 14 (2003) 172. 39. K. Azumi, and M. Seo, “Hydrogen absorption monitoring of sputter-deposited Ti film in seawater,” Corros. Sci. 47 (2005) 2470. 40. T. Sonoda, A. Watazu, J. Zhu, W. Shi, K. Kato, and T. Asahina, “Structure and mechanical properties of pure titanium film deposited onto TiNi shape memory alloy substrate by magnetron DC sputtering,” Thin Solid Films 459 (2004) 212. 41. I. Kondo, T. Yoneyama, K. Kondo, O. Takenaka, and A. Kinbara, “Interface structure and adhesion of sputtered Ti layers on Si: the effect of heat treatment,” Thin Solid Films 236 (1993) 236. 42. Y.L. Jeyachandran, B. Karunagaran, S.K. Narayandass, D. Mangalaraj, T.E. Jenkins, and P.J. Martin, “Properties of titanium thin films deposited by dc magnetron sputtering,” Mater. Sci. Eng. A 431 (2006) 277. 43. Y. Wang, R. Shen, X. Jin, P. Zhu, Y. Ye, and Y. Hu, “Formation of CuO nanowires by thermal annealing copper film deposited on Ti/Si substrate,” Appl. Surf. Sci. 258 (2011) 201. 44. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric ceramics, William R. CooK, Jr. and Hans Jaffe Gould Inc, Cleveland, (1971) . 45. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, “Plasma electrolysis for surface engineering,” Surf. Coat. Technol. 122 (1999) 73. 46. J.A. Curran, Thermal and mechanical properties of plasma electrolytic oxide coatings, University of Cambridge (U.K.), Department of Materials Science and Metallurgy, Ph.D. dissertation (2005). 47. N.P. Sluginov, J Russ. Phy. Chem. Soc. 12 1-2Phys. (1880) 193. 48. A. Gunterschultze, and H. Betz, Electrolytkondensatoren Krayn Berlin (1937). 49. W. McNiell, and G.F. Nordbloom, US Patent 2 854 390 (1958). 50. W. McNiell, and L.L. Gruss, US Patent 3 293 158 (1966). 51. G.A. Markov, and G.V. Markova, USSR Patent 526 961 Bul. Inv. 32 (1976). 52. A.V. Nikolaev, G.A. Markov, and B.I. Peshchevitskij, Izv. SO AN SSSR. Ser. Khim. Nauk 5 (1977) 32. 53. P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic plasma technology: Science and engineering-An overview,” Surf. Coat. Technol. 201 (2007) 8746. 54. M.G. Fontana and N.D. Greene, Corrosion Engineering, 2nd ed. McGraw-Hill, New York, (1978) 28. 55. A.J. Bard, and L.R. Faulkner, Electrochemical methods fundamentals and applications, 2nd ed. John Weily & Sons, U. S. A, (2001) 92. 56. M.T. Sebastian, Dielectric materials for wireless communication, Amsterdam, London, (2008) 11. 57. G. Shirane, F. Jona and R. Pepinsky, “Some aspects of ferroelectricity,” Proc. IRE. (1955) 1738. 58. M.A. McCormick, and E.B. Slamovich, “Microstructure development and dielectric properties of hydrothermal BaTiO3 thin films,” J. Eur. Ceram. Soc. 23 (2003) 2143. 59. E. Hummel, Electronic Properties of Materials, 3rd ed. Springer-Verlag, New York, (2001) 186. 60. M. Yoshimura, S.-E. Yoo, M. Hayashi, and N. Ishizawa, “Preparation of BaTiO3 Thin Film by Hydrothermal Electrochemical Method,” Jpn. J. Appl. Phys. 28 (1989) L2007. 61. R. Bacsa, P. Ravindranathan, and J.P. Dougherty, “Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates,” J. Mater. Res. 7 (1992) 423. 62. Z. Wu, and M. Yoshimura, “Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal-electrochemical condition,” Solid State Ionic 122 (1999) 161. 63. 詹佩諠,電化學陽極氧化法於異質基材上製備鈦酸鋇之研究, 國立中興大學材料科學與工程學系碩士論文,(2004)。 64. H.-I. Hsiang, F.-S. Yen, and C.-Y. Huang, “Effects of porosity on dielectric properties of BaTiO3 ceramics,” Jpn. J. Appl. Phys. 34 (1995) 1922. 65. T. Hayashi, N. Oji, and H. Maiwa, “Film thickness dependence of dielectric properties of BaTiO3 thin films prepared by sol-gel method,” Jpn. J. Appl. Phys. 33 (1994) 5277. 66. H. Heywang, “Ferroelectricity in perovskite system and their technical applications,” Z. Angew. Phys. 19 (1965) 473. 67. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc. 80 (1997) 1885. 68. N.M. Alford, and S.J. Penn, “Sintered alumia with low dielectric loss,” J. Appl. Phys. 80 (1996) 5895. 69. M. Yoshimura, S.-E. Yoo, M. Hayashi, and N. Ishizawa, “Preparation of BaTiO3 thin film by hydrothermal eletrochemical method,” Jpn. J. Appl. Phys. 28 (1989) L2007. 70. Y. Hirata, A. Nitta, S. Saneshima, and Y. Kamino, “Dielectric properties of barium titanate prepared by hot isostatic pressing,” Mater. Lett. 29 (1996) 229. 71. A.T. Chien, X. Xu, J.H. Kim, J. Sachleben, J.S. Speck, and F.F. Lange, “Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis,” J. Mater. Res. 14 (1999) 3330. 72. A. Bai, and Z.-J. Chen, “Effect of electrolyte additives on anti-corrosion ability of micro-arc oxidation coatings formed on magnesium alloy AZ91D,” Surf. Coat. Technol. 203 (2009) 1956.
摘要: 本研究主要以電漿電解氧化法於Ti/Si基材上製備鈦酸鋇 (BaTiO3) 膜,以0.5 M氫氧化鋇為電解液於70°C反應,探討不同反應電壓對於鈦酸鋇膜之生成以及對其抗腐蝕性和介電性質之影響,同時以鈦塊材為基材作為對照組,探討兩不同反應基材所製備鈦酸鋇膜性質之差異;此外,亦將結果與先前於TiN/Si基材以相同方法成長鈦酸鋇膜之結果進行比較,探究二者對鈦酸鋇膜成長之影響。 於Ti/Si上施加30-75 V電壓皆可製備出立方相鈦酸鋇膜。當反應電壓40 V以下時,表面鈦酸鋇呈現球狀顆粒分布,屬於電化學氧化反應;在50 V和55 V時,為電化學氧化轉變為電漿電解氧化反應之過渡區;60 V以上時,由於反應過程有火花產生,電流曲線產生劇烈震盪,及鈦酸鋇表面呈多孔結構且膜層較厚,此為電漿電解氧化法之特徵。且相較於電化學氧化反應,以電漿電解氧化反應所製備之鈦酸鋇膜具有較佳的抗腐蝕性質及較高的介電常數。此外,以鈦塊材為對照組,發現於鈦塊材上成長鈦酸鋇膜之孔洞大小為Ti/Si的2.5倍,平均膜成長速率亦為Ti/Si的9.8倍。由於Ti/Si上製備之鈦酸鋇膜孔洞較小,具有較低的腐蝕速率;然而受孔洞大小及雜質影響,使得於Ti/Si上製備之鈦酸鋇介電常數略低,而介電損失則明顯小的許多。與先前於TiN/Si基材上以相同方法製備鈦酸鋇之成果比較,發現TiN/Si上鈦酸鋇之成膜速率較快,推測原因為TiN中之鈦離子轉變為鈦酸鋇結構中鈦離子所需的能量較Ti膜低所致;然而於Ti/Si上所製備鈦酸鋇膜具有較為緻密之結構,故介電常數遠大於TiN/Si上所得之鈦酸鋇膜。 綜合上述結果,以電漿電解氧化法於Ti膜底材上製備鈦酸鋇,較其他相關製程,可降低製程時間及溫度,並生成結晶性較佳的鈦酸鋇膜;以電漿電解氧化法於Ti/Si上製備鈦酸鋇之成膜速率雖然較於鈦塊材及TiN/Si上製備的要慢,但所生成之鈦酸鋇膜之相較於鈦塊材抗腐蝕及介電性質較佳,而相較於TiN/Si則具有較高介電常數。
The objective of this work is to synthesize barium titanate (BaTiO3) films on Ti/Si substrate by plasma electrolytic oxidation. 0.5 M barium hydroxide was used as electrolyte at 70�C. The corrosion resistance and dielectric behavior of BaTiO3 films prepared with various voltages were discussed. Furthermore, synthesis of BaTiO3 films on bulk-Ti was conducted to explore the effect of substrates on the growth of BaTiO3. In addition, the results were also compared to those prepared on TiN/Si. The cubic BaTiO3 films were prepared on Ti/Si at voltages rangimg from 30 to 75 V. BaTiO3 films possessed uniformly distributed spherical-particulate surface morphology as the voltage was below 40 V, which was due to electrochemical oxidation. As the voltage was between 50 V and 55 V, a transion regime from the anodic oxidation to plasma electrolytic oxidation was observed. As the voltage increased up to 60 V, spark occurred during synthesis and acute oscillation of current curve, porous surface and thick BaTiO3 films were observed, which were characterizations of plasma electrolytic oxidation. The corrosion resistance and dielectric constant of BaTiO3 films prepared by plasma electrolytic oxidation is better and higher than those made by electrochemical oxidation. In addition, the bulk-Ti substrate was compared, the pore size of BaTiO3 films prepared on bulk-Ti is 2.5 times and average thickness growth rate is 9.8 times of BaTiO3 films made on Ti/Si. The smaller pore size of BaTiO3 films made corrosion rate of BaTiO3 films on Ti/Si is lower, while the pore size and impurity caused lower dielectric constant and loss of BaTiO3 films on Ti/Si. The results were also compared to those synthesized on TiN/Si by plasma electrolytic oxidation. It is found that the growth rate of BaTiO3 films prepared on TiN/Si is faster, which may be due to that the transition energy of titanium ions in TiN into BaTiO3 structure is lower. As for dielectric properties, the BaTiO3 films sythensied on Ti/Si were more dense, whcih made the dielectric constant of BaTiO3 films on Ti/Si is higher. Base on above results, plasma electrolytic oxidation could reduce processing time and temperature in the synthesis of BaTiO3 films on Ti/Si, higher crystallinity of BaTiO3 films could also be made. The growth rate of BaTiO3 films prepared on Ti/Si by plasma electrolytic oxidation was slower than those synthesized on bulk-Ti and TiN/Si, but the corrosion resistance and dielectric properties is better than those made on bulk-Ti. Moreover, the obtained dielectric constant is higher than that synthesized on TiN/Si.
URI: http://hdl.handle.net/11455/11339
其他識別: U0005-1208201314414100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201314414100
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.