Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11343
標題: 低維度奈米金屬化合物結構之合成、特性與應用
Synthesis, Characterization and Application of Low Dimensional Nanostructures of Metal Compounds
作者: 黃盟文
Huang, Meng-Wen
關鍵字: 奈米線
nanowires
五氧化二釩
二氧化釩
硫化鋅
V2O5
VO2
ZnS
出版社: 材料科學與工程學系所
引用: [1] J. Rosenqvist, K. Axe, S. Sjoberg, and P. Persson, “Adsorption of dicarboxylates on nano-sized gibbsite particles: effects of ligand structure on bonding mechanisms”, Colloid. Surface. A, 220, 91 (2003). [2] M. A. Baker, S. Klose, C. Rebholz, A. Leyland, and A. Matthews, “Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings”, Surf. Coat. Tech., 151, 338 (2002). [3] L. Cha, C. Scheu, H. Clemens, H. F. Chladil, G. Dehm, R. Gerling, and A. Bartels, “Nanometer-scaled lamellar microstructures in Ti–45Al–7.5Nb–(0; 0.5)C alloys and their influence on hardness”, Intermetallics, 16, 868 (2008). [4] B. Chaudhry, H. Ashton, M. Yost, S. Bull, and D. Frankel, “Nanoscale viscoelastic properties of an aligned collagen scaffold”, J. Mater. Sci-Mater. M., 20, 257 (2009). [5] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled Growth of the ZnO Nanowires and Their Optical Properties”, Adv. Mater. 12, 323 (2002). [6] C. M. Lieber, and Z. L. Wang, “Functional Nanowires”, MRS Bull. 32, 99 (2007). [7] Y. H. Lin, P. S. Lee, Y. C. Hsueh, K. Y. Pan, C. C. Kei, M. H. Chan, J. M. Wu, T. P. Perng, and Han C. Shih, “Atomic Layer Deposition of Zinc Oxide on Multiwalled Carbon Nanotubes for UV Photodetector Applications”, J. Electrochem. Soc. 158 (2) K24 (2011). [8] C. Y. Pan, Z. J. Zhang, X. Su, Y. Zhao, and J. G. Liu, “Characterization of Fe Nonorods Grown Directly from Submicron-Size Iron Grains by Thermal Evaporation”, Phys. Rev. B 70, 233404 (2004). [9] A. J. Zarur, and J. Y. Ying, “Reverse Microemulsion Synthesis of Nanostructured Complex Oxides for Catalytic Combustion”, Nature 403, 65 (2000). [10] J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, “Softening of Nanocrystalline Metals at very Small Grain Sizes”, Nature 391, 561 (1998). [11] J. A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles”, Appl. Phys. Lett. 78, 718 (2001). [12] S. B. Soffer, “Statistical Model for Size Effect in Electrical Conduction”, J. Appl. Phys. 38, 1710 (1967). [13] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, “Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance”, Science 280, 567 (1998). [14] Y. H. Kao, “Size- Effect Variation pf Optical Properties of Conductors”, Phys. Rev. 144, 405 (1996). [15] I. Felner, “The Effect of Chemical Substitution on Superconductivity in the YBa2Cu3O7”, Thermochimica Acta. 174, 41 (1991). [16] R. Feynman, “There’s plenty of room at the bottom”, Engineering and Science, 23, 1960. [17] Created by the Office of Basic Energy Sciences in the U. S. Department of Energy. [18] C. Buzea, I. Pacheco, and K. Robbie, “Nanomaterials and Nanoparticles: Sources and Toxicity”, Biointerphases 2, MR17–71 (2007). [19] Nanotechnologies, Wikipedia, http://en.wikipedia.org/wiki/Nano_technologies [20] “Tiny Inhaled Particles Take Easy Route from Nose to Brain”, Elder, A. (2006) [21] J. Wu, W. Liu, C. Xue, S. Zhou, F. Lan, L. Bi, H. Xu, and X. Yang,. “Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure”, Toxicology letters 191, (1) 1–8. (2009). [22] T. S. Jonaitis, J. W. Card, B. Magnuson, “Concerns regarding nano-sized titanium dioxide dermal penetration and toxicity study.”, Toxicology letters 192, (2) 268–269 (2010). [23] R. Zsigmondy, J. Wiley and N. Y. Sons, “Colloids and the Ultramicroscope: A Manual Of Colloid Chemistry And Ultramicroscopy (1914)”, Kessinger Publishing, LLC (September 10, 2010). [24] R. Nemutudi, M. Kataoka, C. J. B. Ford, N. J. Appleyard, M. Pepper, D. A. Ritchie, and G. A. C. Jones, “Noninvasive lateral detection of coulomb blockade in a quantum dot fabricated using atomic force microscopy”, Appl. Phys. Lett. 95, 2557 (2004). [25] R. Tenne, “Fullerene-like structures and nanotubes from inorganic compounds”, Endeavour 20, 97 (1996). [26] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, “Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition”,Chem. Phys. Lett. 381, 422 (2003). [27] P. R. Sajanlal, T. S. Sreeprasad, A. K. Samal and T. Pradeep, “Anisotropic nanomaterials: structure, growth, assembly, and functions”, Nano Reviews 2i0, (2011) 5883. [28] C. Buzea, I. I. P. Blandino, and K. Robbie, “Nanomaterials and nanoparticles: Sources and toxicity”, Biointerphases 2, MR17 - MR172 (2007). [29] Green Earth Nano Science INC., http://www.greenearthnanoscience.com/what-is-photocatalyst.php [30] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee. J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett. 75, 3129 (1999). [31] D. Loss, Quantum phenomena in nanotechnology”, Nanotechnology 20, 430205 (2009). [32] K. A. Dean, and B. R. Chalamala, “The environmental stability of field emission from single-walled carbon nanotubes”, Appl. Phys. Lett. 75, 3017 (1999). [33] W. A. de Heer, A. Chatelaine, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science 270, 1179 (1995). [34] http://www.csc.fi/english/pages/mika/publications/Ogandothesis.pdf [35] Alain Nouailhat, “An Introduction to Nanoscience and Nanotechnology”, (2008). [36] Lerner and Trigg, “Encyclopedia of Physics 2nd Ed”, VCH Publishers, 1308 (1991). [37] B. Lewis, in Crystal Growth, Pergamon, Oxford, pp. 23-63 (1980). [38] R. S. Wagner, and W. C. Ellis, “Vapor-Solid-Growth Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4, 89 (1964). [39] G. P. X.ao, Z. L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process ”, J Phys Chem. B 108, 7534-7437 (2004). [40] T. J. Trentler, K. M. Hickman, S. C. Goel, A.M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science 270, 1791-1794 (2006). [41] S. M. SZE, “Semiconductor devices”, John Wiley & Sons. INC., Taiwan, 2001. [42] Z. L. Wang, X. Y. Kong, Y. Ding, P. X. Gao, W. L. Hughed, R. S. Yang, and Y. Zhang, “Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces”, Adv. Funct. Mater. 14, 943 (2004). [43] Z. R. Dai, Z. W. Pan, and Z. L. Wnag, “Novel Nanostructures of Functional Oxide Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13, 9 (2003). [44] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Huang, and S. Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation”, Solid State Commun. 109, 677 (1999). [45] B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L. Tong and T. Yu,“Single-Crystalline V2O5 Ultralong Nanoribbon Waveguides”, Adv. Mater. 21, 2436–2440 (2009). [46] C. K. Chan, H. Peng, R. D. Twesten, K. Jarausch, X. F. Zhang and Y. Cui, “Fast, completely reversible li insertion in vanadium pentoxide nanoribbons”, Nano Lett. 7, 490–495 (2007). [47] M. D. Giulio, D. Manno, G. Micocci, A. Serra, and A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide”, J. Phys. D: Appl. Phys. 30, 3211 (1997). [48] J. Muster, G. T. Kim, V. Krstić, J. G. Park, Y. W. Park, S. Roth and M. Burghard, “Electrical transport through individual vanadium pentoxide nanowires”, Adv. Mater. 12, 420–424 (2000). [49] K. Takahashi, S. J. Limmer, Y. Wang and G. Z. Cao, “Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition”, J. Phys. Chem. B 108, 9795–9800 (2004). [50] 曹恒光、連大成,淺談微乳液, 物理雙月刊,第23卷,第4期,pp. 488-493, 2001。 [51] T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter-Long V2O5 Nanowires: From Synthesis to Field-Emission, Electrochemical, Electrical Transport, and Photoconductive Properties” , Adv. Mater., 22, 2547–2552 (2010). [52] S. L. Chou, J. Z. Wang, J. Z. Sun, D. Wexler, M. Forsyth, H. K. Liu, D. R. MacFarlane, and S. X. Dou, “High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte”, Chem. Mater. 20, 7044–7051 (2008). [53] F. Zhou, X. Zhao, C. Yuan and L. Li, “Vanadium Pentoxide Nanowires: Hydrothermal Synthesis, Formation Mechanism, and Phase Control Parameters”, Cryst. Growth Des. 8, 723–727 (2008). [54] Y. T. Hsieh, L. W. Chang, C. C. Chang, and H. C. Shih, “Synthesis of WO3 nanorods by thermal CVD at various gas flow rates and substrate temperatures”, Electrochem. Solid St. 14, K40 (2011). [55] Y. T. Hsieh, M. W. Huang, C. C. Chang, U. S. Chen, and H. C. Shih, “Growth and optical properties of uniform tungsten oxide nanowire bundles via a two-step heating process by thermal evaporation”, Thin Solid Films 519, 1668 (2010). [56] Y. G. Zhang, N. L. Wang, R. R. He, J. Liu, X. Z. Zhang, and J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture”, J. Cryst. Growth 233, 803 (2001). [57] Y. T. Hsieh, L. W. Chang, C. C. Chang, and H. C. Shih, “Synthesis of WO3 nanorods by thermal CVD at various gas flow rates and substrate temperatures”, Electrochem. Solid St., 14, K40 (2011). [58] X. Xiang, C. B. Cao, Y. J. Guo, and H. S. Zhu, “A simple method to synthesize gallium oxide nanosheets and nanobelts”, Chem. Phys. Lett. 378, 660 (2003). [59] Metal Oxide-based TFT, “http://home.skku.edu/~smdl/sub3/sub_3.php”. [60] J .M. Ting and R. M. Liu, “Carbon nanowires with new microstructures”, Carbon 41, 601-603 (2003). [61] X. B. Zeng, Y. Y. Xu, S. B. Zhang, Z. H. Hu, H. W. Diao, Y. Q. Wang, G. L. Kong, and X. B. Liao “Silicon nanowires grown on a pre-annealed Si substrate”, Journal of Crystal Growth 247, 13-16 (2003). [62] L. H. Chan, K. H. Hong, S. H. Lai, X. W. Liu and H. C. Shih, “The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition”, Thin solid Film 423, 27-32 (2003). [63] http://engr.nmsu.edu/~jcecil/current-initiatives/NanoTechnology_Research/SCR EAM.htm [64] J. Muster, G. T. Kim, V. Krstić, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical Transport Through Individual Vanadium Pentoxide Nanowires”, Adv. Mater. 12, 420 (2000). [65] J. Wang, and K. E. Gonsalves, “A Combinatorial Approach for the Synthesis and Characterization of Polymer/Vanadium Oxide Nanocomposites”, J. Comb. Chem. 1, 216-222 (1999). [66] http://www.gitam.edu/eresource/nano/NANOTECHNOLOGY [66] E. S. Michael , S. B. Petra , N. Reinhard , H. Otto , and N. Petr , “Vanadium Oxide Nanotubes. A New Nanostructured Redox‐Active Material for the Electrochemical Insertion of Lithium”, J. Electrochem. Soc. 146 (8), 2780-2783 (1999). [67] J. P. Charles, and R. M. Charles, “Sol‐Gel‐Based Template Synthesis and Li‐Insertion Rate Performance of Nanostructured Vanadium Pentoxide”, J. Electrochem. Soc. 146 (9,)3176-3180 (1999). [68] B. L. Brinda, J. P. Charles, and R. M. Charles, “Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures”, Chem. Mater. 9, 2544-2550 (1997). [69] http://research.chem.psu.edu/axsgroup/Ran/research/templatesynthesis.html [70] Microemulsion, http://en.wikipedia.org/wiki/Microemulsion [71] D. L. Zhu, H. Zhu, and Y. H. Zhang, “Hydrothermal synthesis of La0.5Ba0.5MnO3 nanowires”, Appl. Phys. Lett. 80, 1634 (2002). [72] G. Xu, Z. H. Ren, P. Y. Du, W. J. Weng, G. Shen, and G. R. Han, “Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires”, Adv. Mater. 17, NO.7, (2005). [73] Hydrothermal synthesis, http://en.wikipedia.org/wiki/Hydrothermalsynthesis. [74] http://www.kmacgill.com/lecture_notes/lecture_notes_11_12.htm. [75] V.E. Henrich, P.A. Cox, “The Surface Science of Metal Oxides”, University Press, Cambridge (1994). [76] K. Hermann, M. Witko, in: D. P. Woodruff, “The Chemical Physics of Solid Surfaces (Chapter 4): Oxide Surfaces”, Elsevier Science 9, 136 (2001) [77] I. Pollini, A. Mosser, and J. C. Parlebas, “Electronic, Spectroscopic and Elastic Properties of Early Transition Metal Compounds”, Phys. Rep. 355 (2001) 1. [78] K. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov, “Mott-Hubbard Metal-Insulator Transition in Paramagnetic V2O3: An LDA+DMFT(QMC) Study”, Phys. Rev. Lett. 86, 5345 (2001). [79] A. Joshi, M. Ma, and F.C. Zhang, ” Theory for Phase Transitions in Insulating V2O3”, Phys. Rev. Lett. 86, 5743 (2001). [80] A. Fujimori, T. Yoshida, K. Okazaki, T. Tsujioka, K. Kobayashi, T. Mizokawa, M. Onoda, T. Katsufuji, Y. Taguchi, and Y. Tokura, “ Electronic structure of Mott Hubbard type transition-metal oxides”, J. Electron Spectrosc. Relat. Phenom. 117–118, 277 (2001). [81] R. Zimmermann, R. Claessen, F. Reinert, P. Steiner, and S. Hufner, “ Strong hybridization in vanadium oxides: evidence from photoemission and absorption spectroscopy”, J. Phys.: Condens. Matter 10, 5697 (1998). [82] H. D. Kim, H. Kumigashira, A. Ashihara, T. Takahashi, and Y. Ueda, “ High-resolution photoemission study of V2-yO3”, Phys. Rev. 57. 1316 (1998). [83] S. Surnew, M. G. Ramsey, and F. P. Netzer, “ Vanadium Oxide Surface Studies”, Surf. Sci. 73, 117 (2003). [84] VanadiumSlag, http://bruceaffinity.en.busytrade.com/selling_leads/info/2142339/ Vanadium-Slag.html. [85] W. Bruckner, H. Oppermarm, W. Reichelt, J. I. Ternkow, E. A. Tschudnowski, and E. Wolf, “ Vanadiumoxide”, Akademie, Berlin, (1983). [86] “Phase diagram of the V-O system”, Binary Alloy Phase Diagrams, 2nd ed. 3, 2930-2931. [87] A. Kamper, I. Hahndorf, and M. Baerns, “A molecular mechanics study of the adsorption of ethane and propane on V 2 O 5 (001) surfaces with oxygen vacancies”, Top. Catal. 11–12, 77 (2000). [88] J. Haber, M. Witko, and R. Tokarz, “Vanadium pentoxide I. Structures and properties”, Appl. Catal. A General, 157, 3-22 (1997). [89] J. Haemers, E. Baetens and J. Vennik, “On the electrical conductivity of V2O5 single crystals”, Phys. Stat. Solid A, 20, 381(1973). [90] Y. Feldman, E. Wassermam, D. J. Srolovitz, and R. Tenne, “High-rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerences and Nanotubes”, Science 267, 222 (1990). [91] Y. R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, and J. L. Hutchison, “Cage structures and nanotubes of NiCl2”, Nature 395, 336 (1998). [92] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, “Boron nitride nanotubes”,Science 269, 966 (1995). [93] F. Krumeich, H. J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper, “Morphology and topochemical reactions of novel vanadium oxide nanotubes”, J. Am. Chem. Soc. 121, 8324 (1999). [94] L. Krusin-Elbaum, D. M. Newns, H. Zeng, V. Derycke, J. Z. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping”, Nature 431, 672 (2004). [95] W. Chen, J. Peng, L. Mai, Q. Zhu, and Q. Xu, “Synthesis of vanadium oxide nanotubes from V2O5 sols”, Mater. Lett. 58, 2275 (2004). [96] T. Chirayil, P. Y. Zavalij, and M. S. Whittingham, “Hydrothermal Synthesis of Vanadium Oxides”, Chem. Mater. 10, 2629 (1998). [97] M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS”, Surf. Sci. 454–456, 41 (2000). [98] X. Liu, C. Täschner, A. Leonhardt, M. H. Rümmeli, T. Pichler, T. Gemming, B. Büchner, and M. Knupfer, “Structural, optical, and electronic properties of vanadium oxide nanotubes”, Phys. Rev. B 72, 115407 (2005). [99] F. Zhou, X. Zhao, C. Yuan, L. Li, and H. Xu, “Low-temperature Hydrothermal Synthesis of Orthorhombic Vanadium Pentoxide Nanowires”, Chem. Lett. 36, 2 (2007). [100] M. Li, F. Y. Kong, H. Q. Wang, and G. H. Li, “Synthesis of vanadium pentoxide (V2O5) ultralong nanobelts via an oriented attachment growth mechanism”, CrystEngComm, 13, 5317 (2011). [101] L. Ren, M. H. Cao, S. F. Shi , C. W. Hua, ” Vanadium oxide nanodisks: Synthesis, characterization, and electrochemical Properties”, Mater. Res. Bull. 47, 85 (2012). [102] C. O. Dwyer, D. Navas, V. Lavayen,, E. Benavente, M. A. Santa Ana, G. Gonza´lez, S. B. Newcomb, and C. M. Sotomayor Torres, “Nano-Urchin: The Formation and Structure of High-Density Spherical Clusters of Vanadium Oxide Nanotubes”, Chem. Mater. 18, 3016 (2006). [103] C. D. Guerraa and J. Piqueras, “Structural and cathodoluminescence assessment of V2O5 nanowires and nanotips grown by thermal deposition”, J. Appl. Phys. 102, 084307 (2007). [104] C. Karunakaran, and S. J.Senthilvelan, “Vanadia-catalyzed solar photooxidation of aniline”, Colloid Interface Sci. 289, 466 (2005). [105] J. Liu, X. Wang, Q. Peng, and Y. Li, “Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials”, AdV. Mater. 17, 764 (2005). [106] H. Serier, M. F. Achard, O. Babot, N. Steunou, J. Maquet, J. Livage, C. Leroy, and R. Backov, “Designing the Width and Texture of Vanadium Oxide Macroscopic Fibers: Towards Tuning Mechanical Properties and Alcohol‐Sensing Performance”, Adv. Funct. Mater. 16, 1745 (2006). [107] C. M. Leroy, M. F. Achard, O. Babot, N. Steunou, P. Masse, J. Livage, L. Binet, N. Brun, and R. Backov, “Designing nanotextured vanadium oxide-based macroscopic fibers: application as alcoholic sensors”, Chem. Mater. 19, 3988 ( 2007). [108] C. Imawan, H. Steffes, F. Solzbacher, and F. Obermeier, “Enhancement of NO2 sensing properties of In2O3 based thin films using an Au or Ti surface modification”, Sens. Actuators B 77, 346 (2001). [109] X. Li, W. Li, H. Ma, and J. Chen, “Electrochemical Lithium Intercalation Deintercalation of Single-Crystalline V2O5 Nanowires”, J. Electrochem. Soc. 154, A39 (2007). [110] B. Li, Y. Xu, G. Rong, M. Jing, L. Xie, “Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities”, Nanotechnology 17, 2560 (2006). [111] X. Yang, F. Y. Ma, K. Li, Y. Guo, J. L. Hu, W. Li, M. X. Huo, and Y. H. Guo,” Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: New efficient photocatalyst for dye degradation”, Journal of Hazardous Materials 175, 429 (2010). [112] N. Özer, S. Sabuncu, and J. Cronin, “Electrochromic properties of sol-gel deposited Ti-doped vanadium oxide film”, Thin Solid Films 338, 201 (1999). [113] C. Turquat, C. Leroux, M. Roubin and G. Nihoul, “Vanadium-doped Hafnia: Elaboration and Structural Characterization”, Solid State Commun. 1, 3 (1999). [114] F. Guinneton, L. Sauques, J. C. Valmalette, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure”, Thin Solid Films 446, 287 (2004). [115] J. Haber, M. Witko, and R. Tokarz, “Vanadium pentoxide I. Structures and properties”, Appl. Catal. A: General 157 3 (1997). [116] H. T. Kim, B. G. Chae, D. H. Youn, G. Kim, and K. Y. Kang, “Abrupt metal–insulator transition observed in VO2 thin films induced by a switching voltage pulse”, Appl. Phys. Lett. 86, 242101 (2005). [117] M. Maaza, O. Nemraoui, C. Sella, A. C. Beye, B. B. Barak, “Thermal induced tunability of surface plasmon resonance in Au–VO2 nano-photonics”, Commun. 254, 188 (2005). [118] H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches”, Sensors Actuators A 122, 108 (2005). [119] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater. 13, 9 (2003). [120] J. I. Sohn, H. J. Joo, A. E. Porter, C. J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires”, Nano Lett. 7, 1570 (2007). [121] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and growth of Si nanowires from silicon oxide”, Phys. Rev. B 58, 16024 (1998). [122] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation”, Appl. Phys. Lett. 73, 3902 (1998). [123] F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature”, Phys. ReV. Lett. 3, 34 (1959). [124] J. B. Goodenough, “The two components of the crystallographic transition in VO2” J. Solid State Chem. 3, 490 (1971). [125] Z.Peng, W. Jiang, and H. Liu, “Synthesis and Electrical Properties of Tungsten-Doped Vanadium Dioxide Nanopowders by Thermolysis”, J. Phys. Chem. C 111, 1119 (2007). [126] L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method”, J. Phys. Chem. B 110, 19083 (2006). [127] T. Bryllert, L. E. Wernersson, T. Löwgren, and L. Samuelson, “Vertical wrap-gated nanowire transistors”, Nanotechnology 17, 227 (2006). [128] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. M. Lieber, “Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays”, Science 313, 1100 (2006). [129] S. Han, D. Zhang, and C. Zhou, “Synthesis and electronic properties of ZnO/CoZnO core-shell nanowires”, Appl. Phys. Lett. 88, 133109 (2006). [130] S. Ju, K. Lee, D. B. Janes, M. H. Yoon, A. Facchetti, and T. J. Marks, “Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics”, Nano Lett. 5, 2281 (2005). [131] W. I. Park, J. S. Kim, G. C. Yi, and H. J. Lee, “ZnO Nanorod Logic Circuits”, Adv. Mater. 17, 1393 (2005). [132] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater. 13, 9 (2003). [133] M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions”,Rev. Mod. Phys. 70, 1039 (1998). [134] G. Silversmit, D. Delpa, H. Poelman, G. B. Marin, and R. D. Gryse,” Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)”, J. Electron Spectrosc. Relat. Phenom. 135, 167 (2004). [135] E. E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films”, Appl. Opt. 30, 2782 (1991). [136] D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, A. A. Kaplyanskii, D. A. Kurdyukov, and A. B. Pevtsov, “Subpicosecond shifting of the photonic band gap in a three-dimensional photonic crystal”, Appl. Phys. Lett., 86, 041114 (2005). [137] C. H. Ahn, J. M. Triscone, N. Archibald, M. Decroux, R. H. Hammond, T. H. Geballe, O. Fischer, and M. R. Beasley, “Ferroelectric field effect in epitaxial thin film oxice SrCuO2/Pb (Zr0. 52Ti0. 48) O3 heterostructures”, Science 269, 373 (1995). [138] Y. Takahashi, M. Kanamori, H. Hashimoto, Y. Moritani, and Y. Masuda, “Preparation of VO 2 films by organometallic chemical vapour deposition and dip-coating”, J. Mater. Sci., 24, 192 (1989). [139] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, “Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser”, Adv. Mater. 15, 1911 (2003). [140] K. W. Chang, and J. J. Wu, “Low‐Temperature Growth of Well‐Aligned β‐Ga2O3 Nanowires from a Single‐Source Organometallic Precursor”, Adv. Mater. 16, 545 (2004). [141] Z. R. Dai, Z.W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater. 13, 9 (2003). [142] X. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate”,Nano Lett. 3, 93 (2003). [143] S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, and Y. T. Qian, “General Synthesis of Single‐Crystal Tungstate Nanorods/Nanowires: A Facile, Low‐Temperature Solution Approach”, Adv. Funct. Mater. 13, 639 (2003). [144] G. T. Zhou, X. Wang, and J. C. Yu, “A Low Temperature and Mild Solvothermal Route to the Synthesis of Wurtzite-Type ZnS With Single-Crystalline Nanoplate-like Morphology”, Crystal Growth & Design 5, 1761 (2005). [145] A. R. Verma, and P. Krishma, “Polymorphism and Polytypism in Crystals”, Wiley: New York, (1966). [146] S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, B. R. Ratna, “Size-induced transition-temperature reduction in nanoparticles of ZnS”, Phys. Rev. B 60, 9191 (1999). [147] Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces”, Phys. Rev. Lett. 91, 185502 (2003). [148] C. Ma, D. Moore, J. Li, and Z. L. Wang, “Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS”, Adv. Mater. 15, 228 (2003). [149] P. M. Ajayan, and S. lijima, “Smallest carbon nanotube”, Nature 358, 23 (1992). [150] A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279, 208 (1998). [151] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett. 73, 2247 (1998). [152] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature 393, 49 (1998). [153] Y. H. Gao, Y. Bando, and T. Sato, “Nanobelts of the dielectric material Ge3N4”, Appl. Phys. Lett. 79, 4565 (2001). [154] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater. 15, 353 (2003). [155] J. Hu, T. W. Odom, and C. M. Leiber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes”, Acc. Chem. Res. 32, 435–445 (1999). [156] D. Appell, “Nanotechnology: wired for success”, Nature 419, 553 (2002). [157] K. Dewangan, S. S. Patil, D. S. Joag, M. A. More, and N. S. Gajbhiye, “Topotactical Nitridation of α-MoO3 Fibers to γ-Mo2N Fibers and Its Field Emission Properties”, J. Phys. Chem. C 114, 14710 (2010). [158] R. J. Colton, A. M. Guzman, and J. W. Rabalais, “Electrochromism in some thin‐film transition‐metal oxides characterized by x‐ray electron spectroscopy”, J. Appl. Phys. 49 409 (1978). [159] C. G Granqvist, “Electrochromic oxides: A unified view”, Solid State Ionics 70-71678–685 (1994), [160] G. Gu, M. Schmid, P. W. Chiu, A. Minett, J. Fraysse, G. T. Kim, S. Roth, M. Kozlov, E. Munoz, and R. H. Baughman, “V2O5 nanofibre sheet actuators”, Nat. Mater. 2, 316–319 (2003). [161] Y. H. Taufiq-Yap, Y. C. Wong, Z. Zainal, and M. Z. Hussein, “Synthesis of self-assembled nanorod vanadium oxide bundles by sonochemical treatment”, J. Nat. Gas Chem. 18, 312 (2009). [162] J. Liu, X. Wang, Q. Peng, and Y. Li, “Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials”, Adv. Mater. 17, 764 (2005). [163] T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando, and D. Golberg, “Centimeter‐Long V2O5 Nanowires: From Synthesis to Field‐Emission, Electrochemical, Electrical Transport, and Photoconductive Properties”, Adv. Mater. 22, 2547 (2010). [164] C. Xiong, A. E. Aliev, B. Gnade, and K. J. Balkus, “Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics”, ACS Nano 2, 293 (2008). [165] J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth, and M. Burghard, “Electrical transport through individual vanadium pentoxide nanowires”, Adv. Mater. 12, 420 (2000). [166] B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L. Tong, and T. Yu, “Single‐Crystalline V2O5 Ultralong Nanoribbon Waveguides”, Adv. Mater. 21, 2436 (2009). [167] Y. Wang, K. Takahashi, K. H. Lee, and G. Z. Cao, “Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation”, Adv. Funct. Mater. 16, 1133 (2006). [168] P. Ragupathy, S. Shivakumara, H. N. Vasan and N. Munichandraiah, “Preparation of Nanostrip V2O5 by the Polyol Method and Its Electrochemical Characterization as Cathode Material for Rechargeable Lithium Batteries”, J. Phys. Chem. C 112, 16700 (2008). [169] K. Takahashi, S. J. Limmer, Y. Wang, and G. Z. Cao, “Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition”, J. Phys. Chem. B, 108, 9795 (2004). [170] S. L. Chou, J. Z. Wang, J. Z. Sun, D. Wexler, M. Forsyth, H. K. Liu, D. R. MacFarlane, and S. X. Dou, “High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte”, Chem. Mater. 20, 7044 (2008). [171] C. R. Sides, and C. R. Martin, “Nanostructured Electrodes and the Low‐Temperature Performance of Li‐Ion Batteries”, Adv. Mater 17, 125 (2005). [172] A. M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan, “Self‐Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium‐Ion Batteries”, Angew. Chem., Int. Ed. 44, 4391 (2005). [173] C. K. Chan, H. Peng, R. D. Twesten, K. Jarausch, X. F. Zhang, and Y. Cui, “Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons”, Nano Lett. 7, 490 (2007). [174] H. Li, P. He, Y. Wang, E. Hosono, and H. Zhou, “High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2 (B), V6O13 and V2O5”, J. Mater. Chem. 21, 10999 (2011). [175] T. Zehnder, and J. Patscheider, “Structure–performance relations in nanocomposite coatings”, Surf. Coat. Technol. 133, 138 (2000). [176] R. Gupta, A. Khandelwal, A. Gupta, and P. Schaaf, “Characterization of iron oxide films prepared by laser irradiation in oxygen atmosphere”, J. Phys. D Appl. Phys. 42, 185305 (2009). [177] K. Takahashi, S. J. Limmer, Y. Wang, and G. Cao, “Growth and Electrochemical Properties of Single-Crystalline V2O5 Nanorod Arrays”, Jpn. J. Appl. Phys. 44, 662 (2005). [178] M. H Huang, A. Choudrey, and P. D. Yang, “Ag nanowire formation within mesoporous silica”, Chem. Commun. 1063 (2000). [179] M. M. Gonzalez, G. J. Snyder, A. L. Prieto, R. Gronsky , T. A. Sands, and M. Stacy, “Direct electrodeposition of highly dense 50 nm Bi2Te3-ySey nanowire arrays”, Nano Lett. 3 973 (2003). [180] Y. J. Zhang, N. L. Wang, S. P. Gao, R. R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, “A simple method to synthesize nanowires”, Chem. Mater. 14, 3564 (2002). [181] A. Ponzoni, E. Comini, and G. Sberveglieri, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett. 88, 203101 (2006). [182] G. Juloen, G. A. Nazri, and O. Bergstrom, “Raman Scattering Studies of Microcrystalline V6O13”, Phys. Stat. Solidi. B 201, 319 (1997). [183] C. V. Ramana, O. M. Hussain, B. Srinivasulu Naidu, and P. J. Reddy, “Spectroscopic characterization of electron-beam evaporated V2O5 thin films”, Thin Solid Films 305, 219 (1997). [184] C. O. Dwyer, V. Lavayen, S. B. Newcomb, M. A. Santa Ana, E. Benavente, G. González, and C. M. Sotomayor Torresa, “Vanadate Conformation Variations in Vanadium Pentoxide Nanostructures”, J. Electro. Soc. 154, K29-K35 (2007). [185] M. Benmoussa, E. Ibnouelghazi, A. Bennouna, and E. L. Ameziane, “Structural, electrical and optical properties of sputtered vanadium pentoxide thin films”, Thin Solid Films 265, 22-28 (1995). [186] M. Demeter, M. Neumann, and W. Reichelt, “Mixed-valence vanadium oxides studied by XPS”, Surface Science 454-456, 41 (2000). [187] S. Nisho, and M. Kakihana, “Evidence for visible light photochromism of V2O5”, Chem. Mater. 14, 3730 (2002). [188] J. C. Parker, D. J. Lam, Y. N. Xu, and Y. W. Ching, “Optical properties of vanadium pentoxide determined from ellipsometry and band‐structure calculations”, Phys. Rev. B, 42, 5289 (1990). [189] C. Ye, X. Fang, Y. Hao, X. Teng, and L. Zhang, “Zinc oxide nanostructures: morphology derivation and evolution”, J. Phys. Chem. B, 109, 19758 (2005). [190] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56 (1991). [191] Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, “High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes”, Science 267, 222 (1995). [192] Y. R. Hacohen, E. Grunbaum, R. Tenne, J. Solan, and J. L. Hutchsion, “Cage structures and nanotubes of NiCl2”, Nature 395, 336 (1998). [193] N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, “Boron nitride nanotubes”, Science 269, 966 (1995). [194] Y. Wang, and G. Gao, “Synthesis and Enhanced Intercalat
摘要: 本論文研究中,利用電漿輔助化學氣相沉積系統(Microwave Plasma-Enhanced Chemical Vapor Deposition, MPECVD)成功於矽基材上合成出五氧化二釩奈米線。由於製程中無使用觸媒,因此可以驗證奈米線的成長機制為VS機制。五氧化二釩奈米線的單晶斜方晶結構,成長方向為[020]。另外,陰極激發光(cathodoluminescence, CL)光譜得知,五氧化二釩奈米線由於量子尺寸效應,以及奈米線中含有大量缺陷或氧空缺的緣故,造成了光譜紅移現象。研究結果顯示,由於製程時間短,讓MPECVD成為一種高效率,並可穩定地控制生長不同形貌之五氧化二釩奈米材料的方法。 相較於MPECVD,熱化學氣相沈積系統 (Thermal Chemical Vapor Deposition, TCVD),為一種廣泛並有效控制基板溫度的生長方式。本研究中利用熱化學氣相沉積法成功的於矽基板上合成出摻雜鋁之五氧化二釩奈米線,二氧化釩奈米線以及硫化鋅奈米線。由於無使用觸媒,因此可以驗證奈米線的成長機制為VS機制。研究結果顯示,摻雜鋁之五氧化二釩奈米線為單晶的orthorhombic (斜方晶)結構,成長方向沿著[020]。光致發光(photoluminescence, PL)光譜顯示有紅移的現象,主要是因為接近價帶的載子濃度增加以及氧空缺的緣故。酒精氣體感測結果顯示,五氧化二釩是高選擇性、高穩定性的感測材料,摻雜鋁之五氧化二釩在低酒精濃度有較高的靈敏度,但當濃度提高時,由於鋁在五氧化二釩晶體內會產生散射中心,導致電子流動受到阻礙,因此靈敏度會下降。由XRD與TEM結構分析得知,二氧化釩奈米線為單晶的monoclinic (單斜晶)結構,成長方向為[110],其形貌為矩形結構。硫化鋅奈米線為單晶結構且同時有wurtzite以及sphalerite相共存於奈米線中,成長方向分別為[0002]與[111]方向。陰極激發光(cathodoluminescence, CL)光譜得知ZnS發光落於藍光範圍,主要是由直接能隙、硫的空缺以及表面缺陷等原因造成的。UV光感測分析得知,ZnS奈米線有極佳的光感特性,而可以用於感光原件中。
In this thesis, V2O5 nanowires have been fabricated successfully on the Si substrate by Microwave Plasma-Enhanced Chemical Vapor Deposition (MPEVCD) system. Since no catalyst was applied to this study, the result demonstrates that the growth belongs to the self-assembled V-S growth mechanism. The V2O5 nanowires were in a single-crystalline orthorhombic phase and that the growth direction was along the [020]. Cathodoluminescence spectra exhibited a red-shift, resulting from the presence of significant O deficiencies. Our experiments and observations suggest that MPECVD is a highly effective and promising method for the fabrication of V2O5 nanowires. One of the merits thermal chemical vapor deposition (TCVD) is its well-defined substrate temperature which is in general much higher than the MPECVD. In this study, Al doped V2O5 nanowires, VO2 nanowires, and ZnS nanowires have been fabricated successfully on the Si substrate by thermal CVD. Since no catalyst was applied to this study, the result demonstrates that the growth belongs to the self-assembled V-S growth mechanism. The Al doped V2O5 nanowires were in a single-crystalline orthorhombic phase and that the growth direction was along the [020]. Green emission was observed in the photoluminescence (PL) spectra, suggesting that the Al doped V2O5 nanowires exhibited a red shift at an optical absorption wavelength due to the increase in the carrier concentration close the valence band in the band gap and O defects in the nanowires. The gas sensing measurements showed that the V2O5 nanowires were highly selective and stable ethanol sensor materials. Gas sensors properties of the Al doped V2O5 nanowires exhibit higher ethanol gas sensitivity at low ethanol concentration than pure V2O5 nanowires. Al atoms were created a lot of scattering center in the V2O5 crystal to impede the movement of electrons and reduce the electron mobility. Therefore, the sensitivity were not obvious increases. The grown VO2 nanowires were determined to be a rectangular shaped morphology. The XRD and HRTEM analysis shows that the nanowires are single crystalline monoclinic phase structure with a preferential growth direction of [110]. Rapid large-scale production of ZnS nanowires on a Si substrate has been achieved by thermal evaporation. Analysis by XRD and TEM confirmed that single-crystalline wurtzite and sphalerite ZnS coexisted in the as-synthesized nanowires. The growth direction of the ZnS nanowires in wurtzite and sphalerite phases were along [0 0 0 2] and [1 1 1], respectively. The ZnS nanowires of both phases showed almost identical luminescence spectra in the blue region. The blue emission could be explained by the direct band-to-band emission, sulfur vacancies, self-activated sulfur defects on the surfaces, and interstitial lattice defects. The photo-sensing measurement shows that the current rapidly increases to a steady value under the UV light on and then gradually recovers closed to its initial value while the UV light off. The photodetectors fabricated from ZnS nanowires show high photo-sensing ability, which suggests that the ZnS nanowires are promising candidates as photo-sensing devices.
URI: http://hdl.handle.net/11455/11343
其他識別: U0005-0102201306181700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0102201306181700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.