Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11345
標題: 使用AlLi介金屬化合物製備離子水溶液合成Li/Al雙氫氧化合物(LDH)薄膜於玻璃基材/氮化銦鎵發光二極體/多孔性不銹鋼管及該LDH薄膜性質分析之研究
Synthesizing Li-Al layered double hydroxide (LDH) film on glass substrate/ InGaN-based light-emitting diodes and porous 316L stainless steel tube in the ionic solution made of AlLi intermetallic in distilled water
作者: 林致羽
Lin, Zhi-Yu
關鍵字: 鋰鋁層狀氫氧化物
Li-Al-CO3 LDH
玻璃基材
薄膜
氮化銦鎵發光二極體
多孔性316L不鏽鋼管
AEBE glass
film
InGaN-based light-emitting diodes
porous 316L stainless steel tube
出版社: 材料科學與工程學系所
引用: 1. S. P. Newman and W. Jones, New J.Chem., 1998, 22, 105-115. 2. K. H. Goh, T. T. Lim and Z. Dong, Water Research, 2008, 42, 1343-1368. 3. F. Leroux and J. P. Besse, Chem. Mater., 2001, 13, 3507-3515. 4. D. G. Evans and X. Duan, Chem. Commun., 2006, 485-496. 5. J. L. Rendon, C. J. Serna and J. E. Glesias, Clays Clay Miner., 1982, 30, 180-184. 6. F. Trifirb, F. Cavani and A.Vaccari, Catal. Today, 1991, 11, 173-301. 7. I. Sissoko, E. T. Iyagba, R. Sahai and P. Biloen, J. Solid State Chem., 1985, 60, 283-288. 8. A. V. Besserguenev, A. M. Fogg, R. J. Francis, S. J. Price, D. O''Hare, V. P. Isupov and B. P. Tolochko, Chem. Mater., 1997, 9, 241-247. 9. S. L. Wang, R. J. Hseu, R. R. Chang, P. N. Chiang, J. H. Chen and Y. M. Tzou, Colloid Surf. A: Physicochem. Eng. Asp., 2006, 277, 8-14. 10. P. K. Dutta and M. Puri, J. Phys. Chem., 1989, 93, 376-381. 11. J. P. Thiel, C. K. Chiang and K. R. Poeppelmeier, Chem. Mater., 1993, 5, 297-304. 12. C. A. Drewien, M. O. Eatough, D. R. Tallant, C. R. Hills and R. G. Buchheit, Materials Research, 1996, 11, 1507-1513. 13. M. C. Lin, F. T. Chang and J. Y. Uan, J. Mater. Chem., 2010, 20, 6524-6530. 14. Z. L. Hsieh, M. C. Lin and J. Y. Uan, J. Mater. Chem., 2011, 21, 1880-1889. 15. M. R. Weir and R. A. Kydd, Inorganic Chemistry, 1998, 37, 5619-5624. 16. E. Gardner, K. M. Huntoon and T. J. Pinnavaia, Adv. Mater., 2001, 13, 1263-1266. 17. L. Zou, F. Li, X. Xiang, D. G. Evans and X. Duan, Chem. Mater., 2006, 18, 5852-5859. 18. J. Zhou, Y. Cheng, J. Yu and G. Liu, J. Mater. Chem., 2011, 21, 19353-19361. 19. B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker and P. Jacobs, Nature, 1999, 400, 855-857. 20. S. R. Segal, K. B. Anderson, K. A. Carrado and C. L. Marshall, Appl. Catal., A, 2002, 231, 215-226. 21. C. Qi, J. C. Amphlett and B. A. Peppley, Appl. Catal., A, 2006, 302, 237-243. 22. Y. Liu, K. Murata, T. Hanaoka, M. Inaba and K. Sakanishi, J. Catal., 2007, 248, 277-287. 23. J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan-Jimenez and M. Crocker, Catalysis Letters, 2007, 115, 56-61. 24. S. Bhattacharjee, T. J. Dines and J. A. Anderson, J. Phys. Chem., C, 2008, 112, 14124-14130. 25. F. Zhang, X. Xiang, F. Li and X. Duan, Catal. Surv. Asia, 2008, 12, 253-265. 26. J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker and T. J. Toops, Appl. Catal., B, 2008, 82, 120-130. 27. L. C. Hsu, S. L. Wang, Y. M. Tzou, C. F. Lin and J. H. Chen, J. Hazard Mater, 2007, 142, 242-249. 28. T. Kameda, S. Saito and Y. Umetsu, Sep. Purif. Technol., 2005, 47, 20-26. 29. Y. Wang and H. Gao, J. Colloid Interface Sci., 2006, 301, 19-26. 30. K. Kuzawa, Y. Jung, Y. Kiso, T. Yamada, M. Nagai and T. Lee, Chemosphere, 2006, 62, 45-52. 31. P. C. Pavan, E. L. Crepaldi, G. D. Gomes and J. B. Valim, Colloids Surf., A, 1999, 154, 399-410. 32. J. H. Lee, S. W. Rhee and D. Y. Jung, B. Kor. Chem. Soc., 2005, 26, 248-252. 33. K. Okamoto, T. Sasaki, T. Fujita and N. Iyi, J. Mater. Chem., 2006, 16, 1608-1616. 34. Z. P. Liu, R. Z. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada and T. Sasaki, J. Am. Chem. Soc., 2006, 128, 4872-4880. 35. D. Yan, J. Lu, M. Wei, J. Ma, D. G. Evans and X. Duan, Chem. Commun., 2009, 6358-6360. 36. D. P. Yan, J. Lu, M. Wei, D. G. Evans and X. Duan, J. Phys. Chem., B, 2009, 113, 1381-1388. 37. D. Yan, J. Lu, J. Ma, M. Wei, X. Wang, D. G. Evans and X. Duan, Langmuir, 2010, 26, 7007-7014. 38. D. Yan, J. Lu, M. Wei, S. Qin, L. Chen, S. Zhang, D. G. Evans and X. Duan, Adv. Funct. Mater., 2011, 21, 2497-2505. 39. D. Yan, J. Lu, J. Ma, M. Wei, D. G. Evans and X. Duan, Angew. Chem. Int. Ed., 2011, 50, 720-723. 40. W. Shi, M. Wei, D. G. Evans and X. Duan, J. Mater. Chem., 2010, 20, 3901-3909. 41. X. Li, J. Liu, X. Ji, J. Jiang, R. Ding, Y. Hu, A. Hu and X. Huang, Sensors and Actuators B: Chemical, 2010, 147, 241-247. 42. C. Forano, S. Vial and C. Mousty, Curr. Nanosci., 2006, 2, 284-294. 43. M. Darder, M. Lopez-Blanco, P. Aranda, F. Leroux and E. Ruiz-Hitzky, Chem. Mater., 2005, 17, 1969-1977. 44. B. Li, J. He, D. Gevans and X. Duan, Appl. Clay Sci., 2004, 27, 199-207. 45. M. del Arco, S. Gutierrez, C. Martín, V. Rives and J. Rocha, J. Solid State Chem., 2004, 177, 3954-3962. 46. J. H. Choy, J. S. Jung, J. M. Oh, M. Park, J. Jeong, Y. K. Kang and O. J. Han, Biomaterials, 2004, 25, 3059-3064. 47. J. Choy, S. Choi, J. Oh and T. Park, Appl. Clay Sci., 2007, 36, 122-132. 48. L. Anicai, A. C. Manea and T. Visan, Molecular Crystals and Liquid Crystals, 2004, 418, 41-53. 49. C. M. Rangel and M. A. Travassos, Surface and Coatings Technology, 2006, 200, 5823-5828. 50. F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans and X. Duan, Angew. Chem. Int. Ed., 2008, 47, 2466-2469. 51. F. Zhang, M. Sun, S. Xu, L. Zhao and B. Zhang, Chem. Eng. J., 2008, 141, 362-367. 52. X. Guo, S. Xu, L. Zhao, W. Lu, F. Zhang, D. G. Evans and X. Duan, Langmuir, 2009, 25, 9894-9897. 53. L. Hickey, J. T. Kloprogge and R. L. Frost, J. Mater. Sci., 2000, 35, 4347-4355. 54. S. Abello and J. Perez-Ramirez, Adv. Mater., 2006, 18, 2436-2439. 55. R. Z. Ma, Z. P. Liu, K. Takada, N. Iyi, Y. Bando and T. Sasaki, J. Am. Chem. Soc., 2007, 129, 5257-5263. 56. Y. Wang, F. Zhang, S. Xu, X. Wang, D. G. Evans and X. Duan, Ind. Eng. Chem. Res., 2008, 47, 5746-5750. 57. G. Centi and S. Perathoner, Catal Today, 2003, 79-80, 3-13. 58. J. Aumo, S. Oksanen, J. P. Mikkola, T. Salmi and D. Y. Murzin, Ind. Eng. Chem. Res., 2005, 44, 5285-5290. 59. A. Sirijaruphan, J. G. Goodwin, R. W. Rice, D. Wei, K. R. Butcher, G. W. Roberts and J. J. Spivey, Appl. Catal., A, 2005, 281, 1-9. 60. B. Louis, P. Reuse, L. Kiwi-Minsker and A. Renken, Appl. Catal., A, 2001, 210, 103-109. 61. Y. Matatov-Meytal, V. Barelko, I. Yuranov, L. Kiwi-Minsker, A. Renken and M. Sheintuch, Appl. Catal., B, 2001, 31, 233-240. 62. Y. Matatov-Meytal, V. Barelko, I. Yuranov and M. Sheintuch, Appl. Catal., B, 2000, 27, 127-135. 63. T. Boger, M. M. P. Zieverink, M. T. Kreutzer, F. Kapteijn, J. A. Moulijn and W. P. Addiego, Ind. Eng. Chem. Res., 2004, 43, 2337-2344. 64. J. Sun, X. Wang, J. Sun, R. Sun, S. Sun and L. Qiao, J. Molecular Catalysis A: Chemical, 2006, 260, 241-246. 65. M. Uzunova-Bujnova, R. Todorovska, M. Milanova, R. Kralchevska and D. Todorovsky, Appl. Surf. Sci., 2009, 256, 830-837. 66. Y. Liang, H. B. Dai, L. P. Ma, P. Wang and H. M. Cheng, Int. J. Hydrogen Energy, 2010, 35, 3023-3028. 67. J. X. He, K. Kobayashi, M. Takahashi, G. Villemure and A. Yamagishi, Thin Solid Films, 2001, 397, 255-265. 68. D. Shan, Y. Wang, M. Zhu, H. Xue, S. Cosnier and C. Wang, Biosensors and Bioelectronics, 2009, 24, 1171-1176. 69. D. Shan, C. Mousty and S. Cosnier, Analytical Chemistry, 2004, 76, 178-183. 70. R. B. Leggat, S. A. Taylor and S. R. Taylor, Colloids Surf., A, 2002, 210, 83-94. 71. J. Lee, S. Rhee and D. Y. Jung, Chem. Commun., 2003, 2740-2741. 72. J. Qiu and G. Villemure, J. Electroanalytical Chemistry, 1995, 395, 159-166. 73. R. Roto, A. Yamagishi and G. Villemure, J. Electroanalytical Chemistry, 2004, 572, 101-108. 74. J. H. Lee, S. W. Rhee and D. Y. Jung, J. Am. Chem. Soc., 2007, 129, 3522-3523. 75. C. Li, L. Wang, M. Wei, D. G. Evans and X. Duan, J. Mater. Chem., 2008, 18, 2666-2672. 76. E. Geraud, V. Prévot, J. Ghanbaja and F. Leroux, Chem. Mater., 2005, 18, 238-240. 77. H. Zhu, S. Huang, Z. Yang and T. Liu, J. Mater. Chem., 2011, 21, 2950-2956. 78. X. Guo, F. Zhang, D. G. Evans and X. Duan, Chem. Commun., 2010, 46, 5197-5210. 79. Z. Lu, F. Zhang, X. Lei, L. Yang, S. Xu and X. Duan, Chem. Eng. Sci., 2008, 63, 4055-4062. 80. J. Liu, X. Huang, Y. Li, K. M. Sulieman, X. He and F. Sun, J. Phys. Chem., B, 2006, 110, 21865-21872. 81. J. Liu, Y. Li, X. Huang, G. Li and Z. Li, Adv. Funct. Mater., 2008, 18, 1448-1458. 82. H. Chen, F. Zhang, T. Chen, S. Xu, D. G. Evans and X. Duan, Chem. Eng. Sci., 2009, 64, 2617-2622. 83. Y. F. Gao, M. Nagai, Y. Masuda, F. Sato, W. S. Seo and K. Koumoto, Langmuir, 2006, 22, 3521-3527. 84. J. Y. Uan, J. K. Lin and Y. S. Tung, J. Mater. Chem., 2010, 20, 761-766. 85. Z. Lu, F. Zhang, X. Lei, L. Yang, D. G. Evans and X. Duan, Chem. Eng. Sci., 2007, 62, 6069-6075. 86. X. Guo, F. Zhang, S. Xu, D. G. Evans and X. Duan, Chem. Commun., 2009, 6836-6838. 87. Y. Zhao, S. He, M. Wei, D. G. Evans and X. Duan, Chem. Commun., 2010, 46, 3031-3033. 88. A. M. D3359, Standard Test Method for Measuring Adhesion by Tape Test, Test Method B, Cross Cut Test Method, ASTM, West Conshohocken, PA, 1993. 89. C. J. Serna, J. L. White and S. L. Hem, Clays Clay Miner., 1977, 25, 384-391. 90. I. C. Chisem and W. Jones, J. Mater. Chem., 1994, 4, 1737-1744. 91. A. M. El-Toni, S. Yin and T. Sato, Materials Letters, 2004, 58, 3149-3152. 92. M. Zahedi, B. Afra, M. Dehghani-Mobarake and M. Bahmani, J. Memb. Sci., 2009, 333, 45-49. 93. I. P. Mardilovich, E. Engwall and Y. H. Ma, Desalination, 2002, 144, 85-89. 94. Y. H. Ma, B. C. Akis, M. E. Ayturk, F. Guazzone, E. E. Engwall and I. P. Mardilovich, Ind. Eng. Chem. Res., 2004, 43, 2936-2945. 95. P. P. Mardilovich, Y. She, Y. H. Ma and M. H. Rei, Separations, 1998, 44, 310-322. 96. M. E. Ayturk, I. P. Mardilovich, E. E. Engwall and Y. H. Ma, J. Memb. Sci., 2006, 285, 385-394.
摘要: 具高方向性的奈米結構層狀氫氧化物薄膜可藉由一次步驟、室溫製程直接形成於惰性的玻璃基材、及氮化銦鎵發光二極體表面,此層狀氫氧化合物薄膜之化學式經GAXRD鑑定為Li2Al4(CO3)(OH)12.mH2O。此研究藉由一種嶄新方式,簡易的將平板狀的試片平躺浸置於鹼性溶液中,此鹼性溶液是將鋁鋰介金屬化合物溶解於去離子水溶液所製備而成含有鋰離子及鋁離子之溶液。此方法具備簡易、快速、且已成熟可應用至一些惰性的基材。鋰鋁碳酸根層狀氫氧化物薄膜只需40分鐘就可直接成長於玻璃基材表面。經鋰鋁層狀氫氧化物薄膜覆蓋後之試片在可見光波長範圍的穿透率幾乎維持於100 %,於UV-B至UV-C波長範圍顯示具紫外線遮蔽能力(最低穿透率85 %)。此外鋰鋁層狀氫氧化物薄膜只需30分鐘就可覆蓋於氮化銦鎵發光二極體表面,在20-mA電流操作下,其發光強度相較於未處理之氮化銦鎵發光二極體提升了31.2 %。藉由懸吊方式成長於316L多孔性不鏽鋼管表面之鋰鋁氫氧化合物薄膜經600 ℃鍛燒12小時後,相變化為LiAlO2/Al2O3氧化薄膜,此多孔氧化薄膜有潛力作為金屬間擴散之阻障層。
Layered double hydroxide (LDH) nanostructure film with highly oriented have been fabricated on inert substrate such as AEBE glass and InGaN-based light-emitting diodes by one-step, room-temperature process, in which the chemical formula of the oriented ultrathin film is Li2Al4(CO3)(OH)12.mH2O confirmed by GAXRD. This study simply immersed the tablet-shaped specimen lying flat in a aqueous alkaline Al3+- and Li+ -containing solution. The solution was prepared by dissolving AlLi intermetallic compound (IMC) in distilled water. This method is simple, rapid, and may be readily extended to some other inert substrate. As an example, Li-Al-CO3 LDH thin film was coated on AEBA glass in only 40 minutes, the treated specimen demonstrates almost 100 % transparency to visible light and exhibits UV shielding ability in UV-B to UV-C region (minimum about 85 % UV transparency). In another case, nano-scale Li-Al LDH-covered InGaN-based LEDs has been realized in only 30 minutes, that the light output power of the LDH (thin)-LED had a 31.2 % enhancement at 20-mA operating current, compared to standard InGaN-based LEDs (ST-LEDs). After calcinating the as-grown Li-Al LDH film (via hanging method) at high temperature (600 ℃) for 12 hours, a LiAlO2/γ-Al2O3 porous micro-sheet film was obtained on porous 316L stainless steel tube, in which the porous oxide film offers a application possibilities to be a intermetallic diffusion barrier.
URI: http://hdl.handle.net/11455/11345
其他識別: U0005-0308201214093700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0308201214093700
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.