Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11348
標題: 使用成長於矽基板之氮化鎵磊晶膜研製薄膜型發光二極體
Fabrication of thin-film LEDs using GaN-on-Si epilayers
作者: 楊閔皓
Yang, Min-Hao
關鍵字: 矽基氮化鎵
GaN-on-silicon
發光二極體
基板移除技術
晶圓接合
light-emitting diode
silicon removal technique
wafer bonding
出版社: 材料科學與工程學系所
引用: [1]T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, "InGaN/GaN tunnel-injection blue light-emitting diodes," Electron Devices, IEEE Transactions on, vol. 49, pp. 1093-1095, 2002. [2]J. Y. Zhang, W. J. Liu, M. Chen, X. L. Hu, X. Q. Lv, L. Y. Ying, B. P. Zhang, "Performance enhancement of GaN-based light emitting diodes by transfer from sapphire to silicon substrate using double-transfer technique," Nanoscale Research Letters,vol.7, pp. 1-4, 2012. [3]B. N. Aditya and N. Gupta, "Material selection methodology for gate dielectric material in metal-oxide-semiconductor devices," Materials & Design, vol. 35, pp. 696-700, Mar 2012. [4]V. I. Gorbunkov and V. I. Solomonov, "Absorption and Emission Lines of a Mercury Molecule in a Mercury Discharge Lamp," Optics and Spectroscopy, vol. 105, pp. 699-704, Nov 2008. [5]P. Wurfel, "Limits on light emission from silicon," Chinese Optics Letters, vol. 7, pp. 268-270, Apr 2009. [6]T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, "Very efficient light emission from bulk crystalline silicon," Applied Physics Letters, vol. 80, pp. 2996-2998, May 2003. [7]施敏原著,張俊彥譯著,半導體元件物理與製程技術,第三版,高立圖書有限公司,台北,台灣,pp.192-206,2000。 [8]M. Ojanen, P. Karha, and E. Ikonen, "Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range," Applied Optics, vol. 49, pp. 880-886, Feb 2010. [9]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, "Unusual properties of the fundamental band gap of InN," Applied Physics Letters,vol. 80, pp. 3967-3969, May 2002. [10]Y. Xi and E. F. Schubert, "Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Applied Physics Letters, vol. 85, pp. 2163-2165, Sep 2004. [11]S. Todoroki, M. Sawai, and K. Aiki, "Temperature distribution along the striped active region in high&-power GaAlAs visible lasers," Journal of Applied Physics, vol. 58, pp. 1124-1128, 1985. [12]A. Schmitz, A. Ping, M. Khan, Q. Chen, J. Yang, and I. Adesida, "Metal contacts to n-type GaN," Journal of Electronic Materials, vol. 27, pp. 255-260, 1998. [13]莊達人,VLSI製造技術,高立書局,第12-18頁,2002。 [14]V. M. Bermudez, "Study of oxygen chemisorption on the GaN(0001)-(1x1) surface," Journal of Applied Physics,vol. 80,pp. 1190-1200, Jul 1996. [15]H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)," Japan Journal of Applied Physics,vol.28, pp. 2112-2114, 1989. [16]郭浩中,賴芳儀,郭守義著,LED原理與應用 Principles and Applications of Light-emitting Diode,第二版,五南圖書出版股份有限公司,台北,台灣,pp.73-97,2012。 [17]Z. L. Li, X. D. Hu, C. Ke, R. J. Nie, X. H. Luo, X. P. Zhang, T. J. Yu, B. Zhang, C. Song, Z. J. Yang, Z. Z. Chen, and G. Y. Zhang, "Preparation of GaN-based cross-sectional TEM specimens by laser lift-off," Micron, vol. 36, pp. 281-284, 2005. [18]史光國著,半導體發光二極體及固體照明,全華圖書股份有限公司,台北,台灣,pp.10-82,2010。 [19]S. Bader, W. Gust, and H. Hieber, "Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems," Acta Metallurgica et Materialia, vol. 43, pp. 329-337, 1995. [20]C. L. Chang, Y. C. Chuang, and C. Y. Liu, "Ag/Au diffusion waferbondingfot thin-GaN LED fabrication, "Electrochemical and Solid-State Letters, vol. 10, pp. H344-H346, 2007. [21]R. H. Horng, D. S. Wuu, S. C. Wei, C. Y.Tseng, and M. F. Huang, "AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding," Applied Physics Letters, vol. 75, pp. 3054-3056, 1999. [22]R. H. Horng, D. S. Wuu, Y. C. Lien and W. H. Lan, "Low-resistance and high-transparency Ni/indium tin oxide ohmic contactsto p-type GaN," Applied Physics Letters,vol. 79, pp.2925-2927, Oct 2001. [23]C. S. Chang, S. J. Chang, Y. K. Su, Y. Z. Chiou, Y. C. Lin, Y. P. Hsu, S. C. Shei, H. M. Lo, J. C. Ke, S. C. Chen and C. H. Liu, "InGaN/GaN Light-Emitting Diodes with Rapidly Thermal-Annealed Ni/ITO p-Contacts," Japan Journal of Applied Physics,vol. 42, pp. 3324-3327, 2003. [24]S. Simoes, F. Viana, M. Kocak, A. S. Ramos, M. T. Vieira, and M. F. Vieira, "Microstructure of reaction zone formed during diffusion bonding of TiAl with Ni/Al multilayer," Journal of Materials Engineering and Performance, vol. 21, pp. 678-682, May 2012. [25]F.A. Khan, L. Zhou, V. Kumar, I. Adesida, and R. Okojie, "High rate etching of AlN using BCl3/Cl2/Ar inductively coupled plasma," Materials Science and Engineering , vol. 95, pp21-54, 2002. [26]D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, and J. M. Redwing, "Crystallographic wet chemical etching of p-type GaN," Journal of the Electrochemical Society, vol. 147, pp. 763-764, Feb 2000. [27]H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, "High-brightness InGaAlP green light-emitting diodes," Applied Physics Letters,vol. 61, pp. 1775-1777, 1992. [28]P. N. Arne Roos, P. Nostell, D. Ronnow, and A. Roos, "Single-beam integrating sphere spectrophotometer for reflectance andstransmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples," Review of Scientific Instruments, vol. 70, pp. 2481-2494, 1999. [29]T. Ding, A. P. J. Middelberg, T. Huber, and R. J. Falconer, "Far-infrared spectroscopy analysis of linear and cyclic peptides and lysozyme," Vibrational Spectroscopy, vol. 61, pp. 144-150, 2012. [30]S. A. Knickerbocker and A. K. Kulkarni, "Erratum: Estimation and verification of the optical properties of indium-tin-oxide based on the energy band diagram,"Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 15, pp. 206-206, 1997. [31]T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, "Thermal stress in GaN epitaxial layers grown on sapphire substrates," Applied Physics Letters,vol. 77, pp. 4389-4392, 1995. [32]鄧建龍、姚潔宜、張茂男,X-ray Diffraction Utilized in the Semiconductor Industry, Nano Communication, p. 15, 4, 2008. [33]陳立俊,張立,梁鉅銘,林文台,楊哲人,鄭晃忠,材料電微鏡學,國家實驗研究院儀器科技研究中心,台灣,1990。 [34]陳隆建,發光二極體之原理與製程,2006。 [35]高至鈞,汪建民,材料分析,中國材料科學學會,台灣,1998。 [36]T. Chen, Y. Wang, P. Xiang, R. Luo, M. Liu, W. Yang, Y. Ren, Z. He, Y. Yang, W. Chen, X. Zhang, Z. Wu, Y. Liu, and B. Zhang, "Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes," Applied Physics Letters, vol. 100, p. 241112, 2012
摘要: 相對於藍寶石基板,矽基板具有良好的導電性、導熱性和熱穩定性,製程元件後效率優於傳統磊晶在藍寶石基板之結構。本論文主要利用成長於矽基板之磊晶結構,配合高反射鏡面、晶圓貼合技術以及矽基板移除技術,製備高效率、高亮度與高散熱之發光二極體,探討不同結構元件之光電與熱特性,以及磊晶膜透過翻轉後之應力變化,最後與一般傳統水平製程發光二極體作比較。 二次翻轉發光二極體(Secondary-transferred LEDs, S-LEDs)透過基板置換配合高反射鏡面,使得元件在高電流注入下,加速散熱速度並降低元件效率下降效應,相較於傳統水平式發光二極體(Lateral LEDs, L-LEDs),亮度獲得大幅提升。垂直型發光二極體(Vertical LEDs, V-LEDs)利用金屬作為接合材料,其電流分布以及散熱效果有更大的改善,與前二者相比,具有更佳的光電特性。 本實驗中以三種不同結構元件作比較,在通入高電流700 mA時,二次翻轉型和垂直型結構之元件輸出功率分別為155.87 mW和261.07 mW,與水平結構90.88 mW相比,分別增加約71.5 %和187.3 %;表面溫度量測結果得知,二次翻轉型無與垂直型結構的平均表面溫度分別為80.98 °C和56.91 °C,而一般水平結構發光二極體的表面溫度約為90.72 °C。 實驗結果顯示,透過二次翻轉以及垂直式製程之元件在高電流操作下,皆可有效提升元件發光效率,且有助於消除廢熱,改善散熱效果,使元件得以維持良好的光電特性以及熱穩定性。而利用濕蝕刻方式移除矽基板,能確保磊晶膜翻轉後仍保有良好品質。
In this thesis, thin-film blue light-emitting diodes (LEDs) using GaN-on-Si(111) epilayers were fabricated via wafer bonding and substrate removal processes. As compared to the common sapphire substrate, the Si substrate has better properties in electrical conductivity, thermal conductivity, and thermal stability. The substrate-free LEDs were expected to show a higher efficiency and better heat dissipation due to the improvement of current crowding issue. Moreover, the Ag/In bonding layer was also used to enhance the thermal dissipation, and hence reduce the degree of droop in LED efficiency. To understand the influence on LED performances, three kinds of LEDs were prepared in this study. They are named as the lateral LEDs (L-LEDs), secondary-transferred LEDs (S-LEDs), and vertical-structured LEDs (V-LEDs). At an injection current of 700 mA, the light output power of L-LEDs, S-LEDs and V-LEDs were 90.88, 155.87 and 261.07 mW, respectively. Obviously, the light output power of S-LEDs and V-LEDs were enhanced by 71.5 and 187.3 % compared to that of L-LEDs. The surface temperatures of L-LEDs, S-LEDs and V-LEDs were measured to be 90.72, 76.7, and 58.1 �C, respectively. The results clearly indicate that the good performance of LED devices can be achieved by using a thin-film device configuration.
URI: http://hdl.handle.net/11455/11348
其他識別: U0005-2808201321294400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808201321294400
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.