Please use this identifier to cite or link to this item:
標題: 使用銀奈米顆粒提升發光二極體光萃取效率之研究
Enhanced LED Light Extraction Efficiency Using Ag Nanoparticles
作者: 宗成聖
Tsung, Cheng-Sheng
關鍵字: 表面電漿
Surface Plasmon
External Quantum Efficiency
出版社: 材料科學與工程學系所
引用: 【1】 J. P. Kottmann, Olivier J. F. Martin, D. R. Smith,and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape”, Opt. Express, vol.6, p. 213, 2000. 【2】 J. P.Kottmann,and Olivier J. F. Martin, “Plasmon resonant coupling in metallic nanowires”, Phys. Rev. B, vol.64, p. 235402, 2001. 【3】 W. C. Liu, and D. P. Tsai, Jpn. J.Appl, “Deformation and Plasmon Effects of Deformed AgOx-Type Super-Resolution Near-Field Structure”, Phys. Part 1, vol.42, p. 1031, 2003. 【4】 H. F. Ghaemi, TinekeThio, D. E. Grupp, T. W.Ebbesen, and H. J. Lezec, “Surface Plasmon Antenna with Gold Line and Space Grating for Enhanced Visible Light Detection by a SilicononInsulator Metal Oxide Semiconductor Photodiode”, Phys. Rev. B, vol.58, p. 6779, 1998. 【5】 D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Enhanced transmission through subwavelength apertures”, Appl. Phys. Lett., vol. 77, p. 1569, 2000. 【6】 N. Rakov, F. E. Ramos, and M. Xiao, “Strong second-harmonic radiation from a thin silver film with randomly distributed small holes”, J. Phys. Condens. Matter , vol. 15, p. 133, 2003. 【7】 C. J. Murphy, and N. R. Jana, “Controlling the Aspect Ratio of Inorganic Nanorods and NanowiresAdv”, J. Phys. Condens. Matter , vol. 14, p. 80 , 2002. 【8】 W. L. Barnes, A. Dereux, and T. W.Ebbesen, “Surface plasmon subwavelength optics”, Nature, vol. 424, p. 824, 2003. 【9】 G. S. Métraux, Y.C. Cao, R. Jin, and C. A. Mirkin, “Triangular Nanoframes Made of Gold and Silver”, Nano. Lett., vol. 3, p. 519, 2003. 【10】 A. D. McFarland, and R. P. Van Duyne, “Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity”, Nano. Lett., vol. 3, p. 1057, 2003. 【11】 C. Haynes, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy”, J. Phys. Chem. B, vol. 107, p. 7426, 2003. 【12】 D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry:Part I. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode”, J. Electroanal. Chem, p. 84, 1977. 【13】 M. Moskovits, “Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals”, J. Chem.Phys.vol. 69, p. 4159, 1978. 【14】 J. C. Tsang, J. R. Kirtley, and T. N. Theis, ”Surface-plasmon contributions to surface-enhanced Raman scattering”, Sol. State Common., vol 35, p. 667, 1980. 【15】 R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis,A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter,M. J. Natan, ”Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates”, Science, vol. 267, p. 1629, 1995. 【16】 W. P. Chen, and J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films”, J. Opt. Soc. Am., vol. 71, p. 189, 1981. 【17】 H. E. de Bruijn, R.P.H. Kooyman and J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment”, Appl. Opt., p. 1974-1978 , 1990. 【18】 H. Kano, and S. Kawata, “Grating-Coupled Surface Plasmon for Measuring the Refractive Index of a Liquid Sample”, Jpn. J. Appl. Phys., vol. 34, p. 331, 1995. 【19】 O. Stenzel, A. Stendal, K. Voigtsberger, and C. Von Borczyskowski, “Solar Energy Materials and Solar Cells”, vol.37, p. 337, 1995. 【20】 M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “Solar Energy Materials and Solar Cells”, vol. 61, p. 97, 2000. 【21】 C. Nylander, B. Liedberg, and T. Lind, Sens. & Actuators, “Gas detection by means of surface plasmon resonance”, vol. 3, p. 79, 1982. 【22】 W. A. Challener, R. R. Ollman, and K. K. Kam, “A surface Plasmon resonance gas sensor in a ‘compact disc’ format”, Sens. & Actuators, vol. 56, p.254, 1999. 【23】 A. Köck, E. Gornik, M. Hauser, and M. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diodes”, Appl. Phys. Lett., vol. 57, p. 2327, 1990. 【24】 Hecker, N. E.,Hopfel R. A. & Sawaki, N., “Enhanced light emission from a single quantum well locatednear a metal coated surface”, Physica E, vol. 2, p. 98-101, 1998. 【25】 N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G.Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well”, Appl. Phys. Lett., vol. 75, p.1577, 1999. 【26】 W. L.Barnes, “Electromagnetic Crystals for Surface Plasmon Polaritons and the Extraction of Light from Emissive Devices”, J. Light. Tech., vol. 17, p. 2170, 1999. 【27】 S. Gianordoli, R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hank, and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes”, Appl. Phys. Lett., vol. 77, p. 2295, 2000. 【28】 J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode”, IEEE J. Qunt. Elec., vol. 36, p. 1131, 2000. 【29】 P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes”, Advanced Materials, vol. 14, p. 1393, 2002. 【30】 I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U.K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons”, Phys. Rev. B, vol. 60, p. 11564 , 1999. 【31】 A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi,and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling”, Phys. Rev. B, vol. 66, p. 153305, 2002. 【32】 K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells”, Nature Mater., vol 3, p. 601, 2004. 【33】 X. Jiang, F. L. Wong, M. K. Fung, and S.T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”, Appl. Phys.Lett., vol. 83, p. 1875, 2003. 【34】 L. Raniero, I. Ferreira, A. Pimentel, A.Goncalves, P. Canhola, E. Fortunato and R. Martins, “Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings”, Thin Solid Films, p. 511-512, 2006. 【35】 R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Philos. Mag., vol. 4, p. 396, 1902. 【36】 U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld''s Waves)”, J. Opt. Soc. Am., vol. 31, p. 213, 1941. 【37】 A. Hessel, and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings”, Appl. Opt., vol. 4, p.1275, 1965. 【38】 K. Okamoto, I. NiKi, A. Scherer, Y. Narukawa, T. Mukai, and Y.Kawakami, “Surface plasmon enhanced light-emitters based on InGaN quantum wells”, Appl. Phys. Lett., vol. 87, p. 71102, 2005. 【39】 邱國斌、蔡定平, “金屬表面電漿簡介”, 物理雙月刊(廿八卷二期), 2006年4月 【40】 吳民耀、劉威志, “表面電漿子理論與模擬”, 物理雙月刊(廿八卷二期), 2006年4月 【41】 H. Raether, “Surface Plasmon on Smooth and Rough Surface and onGrating”, Springer-Verlag, 1988. 【42】 K.L. Kelly, E. Coronado, L.L. Zhao and G.C. Schatz, “The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, vol. 107, p. 668–677, 2003. 【43】 王灯利, “表面電漿對於半導體發光元件光萃取效率的影響之探討”, 國立中央大學光電科學研究所碩士論文, 2006. 【44】 陳品承, “表面電漿增強奈米矽發光元件之發光效率研究”, 國立成功大學微電子工程研究所碩士論文, 2009. 【45】 邱揚彬, “藉由奈米銀島層增強有機發光二極體出光效率”, 國立清華大學光電工程研究所碩士論文, 2008. 【46】 蔡君擎, “侷域性表面電漿共振對於InGaN/GaN多重量子井光學特性之研究”, 國立臺灣海洋大學光電科學研究所碩士論文, 2009. 【47】 高健智, “具奈米結構與圖案化藍寶石基板之氮化鎵系列發光二極體之研究”, 國立成功大學微電子工程研究所博士論文, 2010. 【48】 鍾育龍, “金屬奈米結構之表面電漿子行為及其與氮化銦鎵/氮化鎵量子井耦合研究”, 國臺灣大學光電工程學研究所碩士論文, 2011. 【49】 K. Okamoto and Y. Kawakami, “High-efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics”, IEEE J. Sel. Top. Quantum Electron., vol.15(4), p. 1199–1209, 2009. 【50】 J. H. Sung,B. S. Kim,C. H. Choi,M. W. Lee,S. G. Lee,S. G. Park,E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance”, MicroelectronicEngineering, vol.86, p. 1120-1123, 2009. 【51】 曾賢德, “金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作”, 物理雙月刊(卅二卷二期), 2010年4月 【52】 Mafune, F., Kohno, J. Y., Takeda, Y., and Kondow, T., “Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced By Laser Ablation”, J. Phys.Chem., vol. 104, No. 35, p. 9111-9117, 2000. 【53】 Mafune, F., Kohno, J. Y., Takeda, Y., and Kondow, T., “Formation and Size Controlof Silver Nnanoparticles by Laser Ablation in Aqueous Solution”,J. Phys.Chem., vol. 104, No. 39 , p. 8333-8337, 2000. 【54】 蔡宗典, “超薄ITO透明導電膜應用在觸控面板之研究”, 國立中央大學光電科學研究所碩士論文, 2008. 【55】 林文翔, “在液晶環境下粗糙銀膜表面全反射及散射光學特性之研究”, 國立中山大學物理研究所碩士論文, 2006.
摘要: 隨著時代環境的變遷,能源使用效率及經濟效益等議題已成為目前全球最關心的問題。在本研究中,我們嘗試利用表面電漿(Surface Plasmon, SP)作用提升發光二極體(Light-Emitting Diode,LED)之光萃取效率(Light Extraction Efficiency,LEE),藉以增益發光二極體外部量子效益(External Quantum Efficiency,EQE)。論文中主要以水平式藍光發光二極體元件製程為研究方向,利用表面電漿電磁耦(Surface Plasma Polariton,SPP)與區域性表面電漿(Localized Surface Plasmon,LSP)機制,以提升發光二極體元件之出光效益。其中,利用奈米結構的銀顆粒,在適當參數條件下,堆疊形成奈米銀顆粒薄膜於p型之氮化鎵磊晶層與玻璃基板上,組成有限厚度金屬薄膜之表面電漿模態,並自然形成金屬表面光柵結構以加強表面電漿耦合作用,再以電子束蒸鍍法蒸鍍銦錫氧化物(Indium Tin Oxide ; ITO)透明導電薄膜(厚度為200nm)於銀奈米顆粒薄膜上,使整體結構經退火後可強化其光電特性,同時增益表面電漿作用與添加些微粗化效果。經測試後,奈米銀顆粒薄膜於玻璃基板時,樣品保有80%~90%的穿透率,且兼具表面電漿作用;若樣品蒸鍍200nm銦錫氧化物薄膜後退火,可再提升表面電漿作用。若將此模型應用於傳統水平式藍光發光二極體製程中,增加發光效率可達90~110%,且元件仍保有良好之電特性效果。
As time goes by, the energy efficiency and economic benefit have become a famous issue. In this thesis, a surface-plasmon-enhanced LED was successfully fabricated by improving the external quantum efficiency via the increase of light extraction efficiency of the device. It was found that the light extraction efficiency of lateral conducting blue LED can be enhanced by using surface plasmon polariton(SPP)and localized surface plasmon(LSP). With a silver nanoparticle layer deposited on p-GaN layer, a metallic thin film as the grating structure increases the out-coupling efficiency during the SPP excitation. Subsequently, electron-beam evaporated 200-nm-thick indium tin oxide(ITO) as an ohmic contact layer with rough surface was deposited on a silver nanoparticle layer using a thermal annealing process. With a comparison of the optical performance of the conventional LED without the silver nanoparticles, we confirm the superior performance of these surface-plasmon-enhanced LED. It exhibited over 1.1 times output power increase than that of the conventional LED at 350 mA and the good current-voltage characteristic as well as the conventional LED. Especially, the transmittance of silver nanoparticles on the glass substrates is higher than 80%, indicating that the increase in output power intensity is not due to the reflection of light by a silver nanoparticle layer.
其他識別: U0005-2808201322000400
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.