Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11358
標題: 利用氨氣/乙烯混合氣體製備n型非晶質電漿輔助化學氣相沉積碳薄膜
n-Type amorphous carbon thin films prepared by radio-frequency plasma enhanced chemical vapor deposition using ammonia/ethylene mixtures
作者: 黃威遠
Huang, Wei-Yuan
關鍵字: 電漿輔助化學氣象沈積法
plasma enhanced chemical vapor deposition
氨氣
乙烯
碳薄膜
n型
ammonia
ethylene
carbon thin films
n-type
出版社: 材料科學與工程學系所
引用: [1]J. Robertson, Mater. Sci. Eng. R, 37 (2002) 129. [2]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [3]H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [4]R.H. Baughman, A.A. Zakhidov, and W.A. deHeer, Science, 297 (2002) 787. [5]H. Zhu, J. Wei, K. Wang, and De. Wu, Sol. Energy Mater. Sol. Cells, 93 (2009) 1461. [6]J. Robertson, Adv. Phy., 35 (1986) 317-374. [7]W. Jacob and W. Möller, Appl. Phys. Lett., 63 (1993) 1771-1773. [8]C. De Martino, F. Demichelis, and A. Tagliaferro, Diam. Relat. Mat., 4 (1995) 1210-1215. [9]S. Aisrnberg and R. Chabot, J. Appl. Phys., 42 (1971) 2953-2958. [10]L. Holland and S. M. Ojha, Thin Solid Films, 38 (1976) 17-19. [11]J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva, J. Appl. Phys., 82 (1997) 6024-6030. [12]J.V. Anguita, S.R.P. Silva, and W. Young J. Appl. Phys., 88 (2000) 5175-5179. [13]R.C. Barklie, Diam. Relat. Mat., 10 (2001) 174-181. [14]R.U.A. Khan, S.R.P. Silva, Diam. Relat. Mat., 10 (2001) 1036-1039. [15]R.U.A. Khan, J.D. Carey, S.R.P. Silva, B.J. Jones, and R.C. Barklie, Phys. Rev. B, 63 (2001) 121201-121204. [16]J. Yang, A. Banerjee, and S. Guha, Sol. Energy Mater. Sol. Cells, 78 (2003) 597. [17]X.J. Su, Q. Zhao, S. Wang, and A. Bendavid, Surf. Coat. Technol., 204 (2010) 2454-2458. [18]M. Rusop, T. Soga, and T. Jimbo, Sol. Energy Mater. Sol. Cells, 90 (2006) 3214-3222. [19]A. Liu, H. Wu, J. Zhu, J. Han, and L. Niu, Diam. Relat. Mat., 17 (2008) 1927-1932. [20]M. Hakovirta, R. Verda, X.M. He, and M. Nastasi, Diam. Relat. Mat., 10 (2001) 1486-1490. [21]P. Peng, X.D. Li, G.F. Yuan, W.Q. She, F. Cao, D. M. Yang, Y. Zhuo, J. Liao, S. L. Yang, and M.J. Yue, Mater. Lett., 47 (2001) 171-177. [22]G.Y. Chen, J.S. Chen, Z. Sun, Y.J. Li, S.P. Lau, B.K. Tay, and J.W. Chai, Appl. Surf. Sci., 180 (2001) 185-190. [23]V.I. Ivanov-Omskii, L.K. Panina, and S.G. Yastrebov, Carbon, 38 (2000) 495-499. [24]Y.B. Zhang, S.P. Lau, L. Huang, and B.K. Tay Diam. Relat. Mat., 15 (2006) 171-175. [25]A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, and W.I. Milne, J. Appl. Phys., 87 (2000) 789. [26]V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, and D.R. Mackenzie, J. Phys.: Condens. Matter, 5 (1993) L169. [27]S. Adhikari, S. Adhikary, A.M.M. Omer, M. Rusop, H. Uchida, T. Soga, M. Umeno, Diamond Relat. Mater., 15 (2006) 188. [28]B. Gupta, P.K. Shishodia, A. Kapoor, R.M. Mehra, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells, 73 (2002) 261. [29]J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng, B.S. Wang, S.J. Mu, and D.W. Cao, Appl. Phys. Lett., 90 (2007) 083508. [30]W.S. Choi, K. Kim, and J. Yi, B. Hong, Mater. Lett., 62 (2008) 577. [31]H.A. Yu, Y. Kaneko, S. Yoshimura, and S. Otani, Appl. Phys. Lett., 68 (1996) 547. [32]H.A. Yu, Y. Kaneko, S. Otani, Y. Sasaki, and S. Yoshimura, Carbon, 36 (1998) 137. [33]Y. Hayashi, S. Ishikawa, T. Soga, M. Umeno, and T. Jimbo, Diamond Relat. Mater,. 12 (2003) 687. [34]S. Adhikari, H.R. Aryal, D.C. Ghimire, A.M.M. Omer, S. Adhikary, H. Uchida, and M. Umeno, Diamond Relat. Mater., 15 (2006) 1894. [35]A.M.M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, and M. Umeno, Diamond Relat. Mater., 14 (2005) 1084. [36]C.H. Lee and K.S. Lim, Appl. Phys. Lett., 72 (1998) 106. [37]K.M. Krishna, T. Soga, T. Jimbo, and M. Umeno, Carbon, 37 (1999) 531. [38]K.M. Krishna, M. Umeno, Y. Nukaya,T. Soga, and T.J imbo, Appl. Phys. Lett., 77 (2000) 1472. [39]K.L. Narayanan, O. Goetzgberger, A. Khan,N. Kojima, and M. Yamaguchi, Sol. Energy Mater. Sol. Cells, 65 (2001) 29. [40]N. Konofaos, E. Evangelou, C.B. Thomas, and J. Appl. Phys., 84 (1998) 4634. [41]N.A. Hastas, C.A. Dimitriadis, D.H. Tassis, and S. Logothetidis, Appl. Phys. Lett., 79 (2001) 638. [42]L.Z. Hao, Q.Z. Xue, X.L. Gao, Q. Li, Q.B. Zheng, and K.Y. Yan, J. Appl. Phys., 101 (2007) 053718. [43]X.M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells, 77 (2003) 105. [44]M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells, 90 (2006) 3205. [45]G.A.J. Amaratunga, D.E. Segal, and D.R. McKenzie, Appl. Phys. Lett., 59 (1991) 69. [46]D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, McGraw-Hill, New York, (2002). [47]A. Luque, G. Sala, and I. Luque-Heredia, Prog. Photovolt: Res. Appl., 14 (2006) 413-428. [48]A.R. Burgers, Prog. Photovolt: Res. Appl., 7 (1999) 457-461. [49]M. Mula at http://pl.wikipedia.org/wiki/Strona_g%C5%82%C3%B3wna [50]M. Alaluf, J. Appelbaum, L. Klibanov, D. Brinkerb, D. Scheimanb, and N. Croitoru, Thin Solid Films, 256 (1995) l. [51]M.A. Alaluf, J. Appelbaum, M. Maharizi, A. Seidman, and N. Croitoru, Thin Solid Fiims, 303 (1997) 273. [52]http://www.hitech-projects.com/dts/docs/pecvd.htm [53]M. Ohring, “Materials science of thin films”, 2nd Ed., Academic Press, San Diego, (2002). [54]V. Baranauskas, S.F. Durrant, M.C. Tosin, A.F. Peterlevitz, B.B. Li, and S.G. Castro, Thin Solid Films, 355 (1999) 157. [55]R.U.A. Khan, A.P. Burden, S.R.P. Silva, J.M. Shannon, and B.J. Sealy, Carbon, 37 (1999) 777. [56]R.D. Forrest, A.P. Burden, R.U.A. Khan, and S.R.P. Silva, Surf. Coat. Technol., 108 (1998) 577. [57]C. Aragón and J.A. Aguilera, Spectroc. Acta Pt. B-Atom. Spectr., 63 (2008) 893–916. [58]A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications, IEEE Press, New York, (1994). [59]R.M. Silverstein, F.X. Webster, and D.J. Kiemle, Spectrometric Identification of Organic Compounds, New Jersey, (2005). [60]M.J. Chiang and M. H. Hon, Thin Solid Films, 516 (2008) 4765-4770. [61]E.C. Le Ru and P.G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, Wellington, New Zealand, 2009. [62]J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, J. Appl. Phys., 80 (1996) 440-447. [63]A.C. Ferrari and J. Robertson, Phys. Rev. B, 61 (2000) 14095-14107. [64]M. Lejeune, M. Benlahsen, and R. Bouzerar, Appl. Phys. Lett., 84 (2004) 344. [65]C.D. Martino, F. Demichelis, and A. Tagliaferro, Diamond Relat. Mater., 4 (1995) 1210. [66]Y. Kawashima and G. Katagiri, Phys. Rev. B, 52 (1995) 10053-10059 [67]G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, Phys. Rev. B, 73 (2006) 125427-125438. [68]C. Thomsen and S. Reich, Phys. Rev. Lett., 85 (2000) 5214-5217. [69]L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, and A. Jorio, Phys. Rev. Lett., 93 (2004) 247401-247404. [70]J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray photoelectron Spectrosopy,” Perkin-Elmer Corporation, Minnesota, U.S.A (1992). [71]F. Arefi-Khonsari, J. Kurdi, M. Tatoulian, and J. Amouroux, Surf. Coat. Technol., 437 (2001) 142-144. [72]D. Babankova, S. Civis, L. Juha, M. Bittner, J. Cihelka, M. Pfeifer, J. Skala, A.Bartnik, H. Fiedorowicz, J. Mikolajczyk, L. Ryc, and T. Sedivcova, J. Phys. Chem. A, 110 (2006)12113. [73]L. Wojcik and A. Markowski, Vacuum, 78 (2005) 235. [74]A. Granier, M. Vervloet, K. Aumaille, and C. Vallee, Plasma Sources Sci. Technol., 12 (2003) 89. [75]A.N. Goyette, J.E. Lawler, L.W. Anderson, D. M. Gruen, T.G. McCauley, D. Zhou, and A.R. Krauss, Plasma Sources Sci. Technol., 7 (1998) 149. [76]S.R.P. Silva, J. Robertson, G.A.J. Amaratunga, B. Rafferty, L.M. Brown, J. Schwan, D.F. Franceschini, and G. Mariotto, J. Appl. Phys., 81 (1997) 2626. [77]B. Dischler, Proc. European Mater. Res. Soc. Symp., 17 (1987) 189. [78]S.R.P. Silva, G.A.J. Amaratunga, and C.P. Constantinou, J. Appl. Phys., 72 (1992) 1149. [79]H.S. Zhang and K. Komvopoulos, J. Appl. Phys., 106 (2009) 093504-1. [80]P. M′erel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Appl. Surf. Sci., 136 (1998) 105. [81]G.L.Dˆu, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surf. Coat. Technol., 201 (2007) 5815. [82]S. Kaciulius, Surf. Interface. Anal., 44 (2012) 1155. [83]D. Papadimitriou, G. Roupakas, C.A. Dimitriadis, and S. Longothetidis, J. Appl. Phys., 92 (2002) 870 [84]A.C. Ferrari, S.E. Rodil, and J. Robertson, Phys. Rev. B, 67 (2003) 155306. [85]Z. Ning, S. Cheng, and S. Yang, Curr. Appl. Phys., 2 (2002) 439-443. [86]C. Ye, Z. Ning, S. Cheng, Y. Xin, and S. Xu, Diam. Relat. Mat., 13 (2004) 191-197. [87]J. Tauc, R. Grigorovici, and A. Vancu, Phys. status solid B, 15 (1966) 627-637. [88]J. Robertson, J. Non-Cryst. Solids, 198 (1996) 615-618. [89]Rusli, J. Robertson, and G.A.J. Amaratunga, J. Appl. Phys., 80 (1996) 2998-3003. [90]C. Oppedisano and A. Tagliaferro, Appl. Phys. Lett., 75 (1999) 3650. [91]M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada J. Appl. Phys., 68 (1990) 1272. [92]S.N. Das, and A.K. Pal, Semicond. Sci. Technol., 21 (2006) 1557. [93]J. Ristein, R.T. Stief, L. Ley, and W. Beyer, J. Appl. Phy., 84 (1998) 3836. [94]V. Paret and M.L. Thèye, J Non-Cryst. Solids, 266 (2000) 750. [95]N. Inagaki, K. Narushima, H. Hashimoto, and K. Tamura, Carbon, 45 (2007) 797. [96]R. Wächter, A. Cordery, Diamond Relat. Mater., 8 (1999) 504. [97]P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Appl. Surf. Sci., 136 (1998) 105.
摘要: 本論文以電漿輔助化學氣相沉積法沉積n型非晶質碳薄膜於p型矽晶片,並探討不同NH3/C2H4比例以及不同退火溫度對碳薄膜性質及a-C:N/p-Si元件之影響。本實驗利用光發射光譜儀、場發射掃描式電子顯微鏡、拉曼散射光譜儀、傅立葉轉換紅外光光譜儀、X光光電子能譜、紫外/可見/紅外光光譜儀來進行電漿診斷、薄膜厚度、微觀結構與光學性質的量測。由電流電壓量測系統進行a-C:N/p-Si元件之電流電壓曲線量測。研究結果發現,當NH3/C2H4比例由0增加至1時,碳膜沉積速率、有序程度及光學能隙值下降,C-N鍵結、N/C比、sp2 C-C含量以及a-C:N/p-Si元件之順向電流密度值增加。退火溫度由300℃增加至375℃時,碳膜內懸吊鍵含量減少、sp2 C-C相對含量增加、光學能隙值下降,碳膜趨向類石墨結構。在退火溫度350℃以上,sp2 C-C含量以及光學能隙值有較明顯變化;而在退火溫度325℃時則有最高順向電流密度值。最後,由實驗結果發現,在NH3/C2H4比例為1、退火溫度為325℃時,a-C:N/p-Si元件具有最高順向電流密度值9.0 mA/cm2以及最佳理想因子值2.0。
The study investigates the effects of different NH3/C2H4 ratios and annealing temperatures on the properties of n-type amorphous hydrogenated carbon thin (a-C:H(N)) films deposited on p-type silicon substrate prepared by plasma enhanced vapor deposition. The plasma diagnosis, coating thickness, microstructure and optical property are analyzed using the optical emission spectrometer, field emission scanning electron microscope, raman scattering spectrometer, X-ray photoelectron spectrometer, fourier transform infrared spectroscopy and UV/Vis/IR spectrophotometer, respectively.The current-voltage curves of a-C:N/p-Si device were measured by current-voltage curve instrument. Experimental results indicate that as the NH3/C2H4 ratios increasing from 0 to 1, the deposition rate, the degree of ordering and optical band gap of carbon films decreases, while the nitrogen-carbon bonds, nitrogen/carbon ratios, sp2 carbon fraction of carbon films and forward current density of a-C:N/p-Si devices increase. The dangling bond fraction of carbon films and optical band gap decrease as the annealing temperatures increasing from 300℃ to 375℃, while sp2 carbon fraction of carbon films increase. RSS and XPS indicate that structure tends to graphite-like with increasing annealing temperature. Furthermore, when the temperature exceeds 350℃, optical band gap and sp2 carbon fraction of carbon films have obvious variations. After annealed at 325℃, there was the highest forward current density. Finally, experimental results show that as NH3/C2H4 ratio was 1 and annealing temperature was 325℃, the a-C:N/p-Si device has the highest forward current density of 9.0 mA/cm2 and the best ideality factor of 2.0.
URI: http://hdl.handle.net/11455/11358
其他識別: U0005-0307201300182200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0307201300182200
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.