Please use this identifier to cite or link to this item:
標題: 功能性埋入結構之氮化銦鎵發光元件特性研究
Functional embedded structures in InGaN light-emitting diodes
作者: 吳冠錞
Wu, Kaun-Chun
關鍵字: 埋入結構
Embedded structures
Light-emitting diodes
出版社: 材料科學與工程學系所
引用: [1] E. F. Schubert, "Light-Emitting Diodes" Cambridge, U.K.:Cambridge Univ. Press,(2003). [2] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue,green and yellow light emitting diodes with quantum well structures”, Jpn. J. Appl. Phys., 34(7A), L797-L799, (1995). [3] S. Nakamura, and G. Fasol, "The Blue Laser Diode", Springer, New York, (1997). [4] Y. Kawakami, Y. Narukawa, K. Omea, SG. Fujita, and S. Nakamura,“Dimensionality of excitons in InGaN-based light emitting devices”, Phys. Stat. Sol., 178(1), 331-336, (2000). [5] T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high power AlGaN-based ultraviolet ligh emitting diode grown on bulk GaN”, Appl. Phys. Lett., 79(6), 711-712, (2001). [6] E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. A. Heji, X. Chen, R. M. Farrell, S. Keller, S. D. Baars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells”, App. Phys. Lett., 98(2), 021102, (2011). [7] Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities”, Appl. Phys. Lett., 94, 111109, (2009). [8] W. C. Ke, C. P. Fu, C. C. Huang, C. S. Ku, L. Lee, C. Y. Chen, W. C. Tsai, W. K. Chen, M. C. Lee, W. C. Chou, W. J. Lin, and Y. C. Cheng, “Optical properties and carrier dynamics of self-assembled GaN Al0.11Ga0.89N quantum dots”, Nanotechnology, 17(10), 2609-2613, (2006). [9] E. F. Schubert, "Light-Emitting Diodes" Cambridge, U.K.:Cambridge Univ. Press, (2003). [10] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”, J. Appl. Phys., 103, 014314, (2008). [11] T. S. Oh, S. H. Kim, T. K. Kim, Y. S. Lee, H. Jeong, G. M. Yang, and E. K. Suh, “GaN-Based Light-Emitting Diodes on Micro-Lens Patterned Sapphire Substrate,” J. Appl. Phys., 47(7), 5333–5336, (2008) [12] J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, “Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate,” IEEE, 57(1), (2010). [13] H. W. Huang, C. H. Lin, J. K. Huang, K. Y. Lee, C. F. Lin, C. C. Yu, J. Y. Tsai, R. Hsueh, H. C. Kuo and S. C. Wang, “Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography”, Materials Science and Engineering B, 164, 76, (2009). [14] Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu and J. J. Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing”, IEEE Electron Devices Letters, 32(2), (2011). [15] S. Chhajed, W. Lee, J. Cho, E. F. Schubert, and J. K. Kim, “Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN”, Appl. Phys. Lett., 98, 071102, (2011). [16] R. Dylewicz, A. Z Khokhar, R. Wasielewski, P. Mazur and F. Rahman, “Nanotexturing of GaN light-emitting diode material through mask-less dry etching”, Nanotechnology, 22, 055301, (2011). [17] W. C. Peng and Y. C. Wu,"Improved luminance intensity of InGaN–GaN light-emitting diode by roughening both the p-GaN surface and the undoped-GaN surface"APPL. PHYS. LETT., 89, 041116, (2006). [18] C. Y. Huang, H. M. Ku, C. Z. Liao and S. Chao, “MQWs InGaN/GaN LED with embedded micro-mirror array in the epitaxial-lateral-overgrowth gallium nitride for light extraction enhancement”, Optics Express, 18(10), 10674, (2010). [19] C. C. Chen, M. H. Shih, Y. C. Yang and H. C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector”, Appl. Phys. Lett., 96, 151115, (2010). [20] W. Y. Lin, D. S. Wuu, S. C. Huang, R. H. Horng, “Enhanced Output Power of Near-Ultraviolet InGaN/AlGaN LEDs With Patterned Distributed Bragg Reflectors”, IEEE Transactions On Electron Devices, 58(1), 173, (2011). [21] B. S. Cheng, C. H. Chiu, M. H. Lo, Y. L. Wu, H. C. Kuo, T. C. Lu, Y. J. Cheng, S. C. Wang and K. J. Huang, “Light Output Enhancement of UV Light-Emitting Diodes With Embedded Distributed Bragg Reflector”, IEEE Photonics Technol. Lett., 23(10), 642, (2011). [22] D. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics”, Appl. Phys. Lett., 101, 221104, (2012). [23] C. C. Kao, H. C. Kuo, Y. L. Hsieh, C. Y. Luo and S. C. Wang, “Light-Output Enhancement in a Nitride-Based Light-Emitting Diode With 22° Undercut Sidewalls”, IEEE Photonics Technol. Lett., 17(1), (2005). [24] D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon and S. C. Hung, “Nitirde-Based LEDs With Phosphoric Acid Etched Undercut Sidewalls”, IEEE Photonics Technol. Lett.,. 21(8), 510, (2009). [25] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh and C. C. Chang, “Enhanced Light Output Power in InGaN Light-Emitting Diodes by Fabricating Inclined Undercut Structure”, Journal of The Electrochemical Society, 153, G1020, (2006). [26] C. C. Yang, C. F. Lin, J. H. Chiang, H. C. Liu, C. M. Lin, F. H. Fan and C. Y. Chang, “Fabrication of Mesa Shaped InGaN-Based Light-Emitting Diodes Through a Photoelectrochemical Process”, J. Electron. Mater., 38(1), 145, (2009). [27] J. Shakya, K. H. Kim, J. Y. Lin and H. X. Jiang, “Enhanced light extraction in Ⅲ–nitride ultraviolet photonic crystal light-emitting diodes”, Appl. Phys. Lett., 85, 142, (2004). [28] C. Y. Cho, S. E. Kang, K. S. Kim, S. J. Lee, Y. S. Choi, S. H. Han, G. Y. Jung and S. J. Park, “Enhanced light extraction in light-emitting diodes with photonic crystal structure selectively grown on p-GaN”, Appl. Phys. Lett., 96, 181110, (2010). [29] Y. W. Cheng, S. C. Wang, Y. F. Yin, L. Y. Su and J. J. Huang, “GaN-based LEDs surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling”, Optics Letters, 36(9), (2011). [30] Y. Ohki, Y. Toyoda, H. Kobayasi, and I. Akasaki, International Symposium an GaAs and Related Compounds, edited by T. Sugano (IOP, Bristol, 1982). [31] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. –C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett., 78, 3379, (2001). [32] K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng,"An 83% Enhancement in the External Quantum Efficiency of Ultraviolet Flip-Chip Light-Emitting Diodes With the Incorporation of a Self-Textured Oxide Mask",IEEE Electron Device Lett., 0741-3106, (2012) [33] M. Ferhat, and F. Bechstedt, “First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: Relation to structural and thermodynamic properties”, Phys. Rev. B,. 65, 075213, (2002). [34] Kittel, Introduction to Solid State Physical. [35] L. Macht, P. R. Hagenan, S. Haffouz, and P. K. Larsen, “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates”, Appl. Phys. Lett., 87, 131904, (2005). [36] Su-Huai Wei, NCPV and Dolar Program Review Meeting, 713 (2003). [37] T. Takeuchi, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, “Near-field scanning optical microscopy studies of V-grooved quantum wire lasers”, Appl. Phys. Lett., 73, 1691, (1998) [38] P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy”, Appl. Phys. Lett.,. 73, 2778, (1998). [39] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh, “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy”, Appl. Phys. Lett.,. 83, 4791, (2003). [40] L. Daia, and B. Zhang, “Comparison of optical transitions in InGaN quantum well structures and microdisks”, J. Appl. Phys., 89, 4951, (2001). [41] F. Bernardini, and V. Fiorentini, “Macroscopic polarization and band offsets at nitride heterojunctions”, Phys. Rev. B, 57, R9427, (1998). [42] Hadis Morkoc, Nitride Semiconductors and Devices. [43] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser liftoff GaN thin-film photonic crystal”, IEEE Photonics Technology Letters, 20(24), 2096-2098, (2008). [44] J. H. Cheng, Y. C. S. Wu, W. C. Peng, and H. Ouyang, “Effects of laser sources on damage mechanisms and reverse-bias leakages of laser lift-off GaN-based LEDs”, J. Electrochem. Soc., 156(8), H640-H643, (2009). [45] J. H. Lee, N. S. Kim, S. S. Hong, and J. H. Lee, “Enhanced extraction efficiency of InGaN-based light-emitting diodes using 100-kHz femtosecond-laser-scribing technology”, IEEE Photonics Technology Letters, 31(3), 213-215, (2010). [46] Y. Zhang, H. Xie, H. Zheng, T. Wei, H. Yang, J. Li, X. Yi, X. Song, G. Wang and J. Li,"Light extraction efficiency improvement by multiple laser stealth dicing in InGaN-based blue light-emitting diodes", OPTICS EXPRESS, 20(6), 6810, (2012). [47] C. F. Lin, C. C. Yang, C. M. Lin, K. T. Chen, C. W. Hu, and J. D. Tsay,"InGaN-Based Light-Emitting Diodes with a Multiple-Air-Gap Layer", Electrochemical and Solid-State Lett., 12(10), H365-H368, (2009). [48] Y. Zhang, B. Leung, and J. Han,"A liftoff process of GaN layers and devices through nanoporous transformation", Appl. Phys. Lett., 100, 181908,(2012). [49] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu,"Doping selective lateral electrochemical etching of GaN for chemical lift-off", Appl. Phys. Lett., 94, 221907, (2009). [50] Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee and J. Han, "The fabrication of large-area, free-standing GaN by a novel nanoetching process", Nanotechnology, 22, 045603, (2011). [51] D. Chen, H. Xiao, and J. Han,"Nanopores in GaN by electrochemical anodization in hydrofluoric acid: Formation and mechanism",J. of Appl. Phys., 112(6), 064303, (2012). [52] K. Al-Heuseen, M.R. Hashim, N.K. Ali,"Effect of different electrolytes on porous GaN using photo-electrochemical etching", Applied Surface Science, 257, 6197–6201,(2011). [53] S. F. Cheah, S. C. Lee, S. S. Ng, F. K. Yam, H. Abu Hassan,"Surface phonon polariton characteristic of honeycomb nanoporous GaN thin films",Appl. Phys. Lett., 102, 101601, (2013) [54] D. W. Jeon, H. S. Cho, J. W. Park, L. W. Jang, M. Kim, J. W. Jeon, J. W. Ju, J. H. Baek, I. H. Lee,"Separation of laterally overgrown GaN template by using selective electrochemical etching",J. of Alloys and Compounds, 542, 59–62, (2012). [55] A. P. Vajpeyia, S. J. Chuab, S. Tripathy and E. A. Fitzgerald,"Effect of carrier density on the surface morphology and optical properties of nanoporous GaN prepared by UV assisted electrochemical etching", Appl. Phys. Lett., 91 , 083110, (2007). [56] A. S. Barker, Jr. and M. Ilegems.,“Infrared Lattice Vibrations and Free-Electron Dispersion in GaN”, Phys. Rev. B, 7, 743–750, (1973).
摘要: 本論文中,利用雷射處理與電化學濕式蝕刻技術,製作具有奈米孔洞與空隙結構增加光取出效率的發光二極體元件,經由雷射處理與電化學濕式蝕刻後,在元件底部n型氮化鎵層與高濃度摻雜n型氮化鎵層分別形成奈米孔洞與空隙結構,利用草酸選擇性蝕刻之特性,設計不同矽摻雜濃度之n型氮化鎵層之發光二極體元件,並對側蝕結構之元件電性與光性加以探討。本實驗將探討具奈米孔洞與空隙結構之側向蝕刻發光二極體元件(Lateral etching light emitting diode, LE-LED) 與化學剝離發光二極體元件(Chamical lift off, LO-LED) 兩者相對於傳統發光二極體(Standard LED, ST-LED) 之特性研究,分別研究兩種氮化鎵發光元件對於發光特性之影響。 實驗一,LE-LED 在未摻雜之氮化鎵層間埋入一高矽摻雜濃度之n型氮化鎵層,經草酸電化學濕式蝕刻後,由於不同矽摻雜濃度之n型氮化鎵層側蝕速率不同,而在元件底部形成奈米孔洞與空隙(nanoporous/Air) 結構,具奈米孔洞與空隙層的發光元件光取出效率相較於ST-LED 有58% 的提升,其主要是由於側向蝕刻形成之奈米孔洞結構散射所造成,而在LE-LED 元件中觀察到光激發波長出現藍移的現象,主要是由於應力釋放的結果,在0°~35°角度間則發現LE-LED 則發現螢光在420nm~500nm 的波長範圍間有一高光穿透之特性,而在波段520nm~700nm 處則有抑制的現象,可藉此推測LE-LED 之奈米孔洞結構,具有一類似於帶通濾波器之光學性質。 實驗二,LO-LED 結構的製備如同LE-LED,利用草酸選擇性蝕刻,增加反應時間,使高濃度摻雜之n型氮化鎵層完全側蝕,可成功製備出剝離之發光二極體元件,量測其光取出效率相較於ST-LED 有215%提升,光激發波長出現藍移的現象,其主要來自應力釋放所造成之結果,而隨著注入電流增加,電激發光波長 LO-LED藍移量則相對於ST-LED有減少的趨勢,其主要是因為InGaN發光層壓縮應變所導致的壓電場有減少的趨勢。 透過雷射處理與電化學濕式蝕刻技術,可製備出側向蝕刻之奈米孔洞與空隙層結構,能有效提升元件之光取出效率,亦研究出化學剝離元件與基板再利用的可能性。
In this paper, the InGaN-based light emitting diodes (LEDs) with nanoporous and air gap structures were fabricated through the laser treatment and the Electrochemical (EC) wet etching process to increase light extraction efficiency. After laser treatment and the EC wet etching process, the nanoporous structure was formed at the GaN:Si layer, and the air gap structures were formed at the heavily doped GaN:Si layer. In this study, we analyzed optical and electrical of these two kinds of LEDs, the lateral etching light emitting diode (LE-LED) and chemical lift off light emitting diode (LO-LED), compared to the standard LED (ST-LED). In the first experiment, the LE-LED structure with the GaN:Si nanoporous and the air-gap structures were fabricated through the EC wet etching process on the GaN:Si layers. The light output power of the LE-LED structure had a 58% enhancement compared with the ST-LED structure that had a high light scattering process occurred on the lateral etched nanoporous structure. The light transmittance ratios of the LE-LED were measured as values of 2.56 times for blue light region (420 to 500nm) and at 0.43 time for yellow light region (520 to 700nm), respectively, compared with the ST-LED structure at lateral 35o detected angle. The transmittance spectrum of the nanoporous GaN:Si structure was similar like a band-pass filter to enhance the light extraction efficiency in InGaN LEDs. In the second experiment, the LO-LED had the same epitaxial structure with the LE-LED. By increasing the reaction time, the GaN:Si nanoporous structure and let the heavily doped GaN:Si layer were etched completely through the EC wet etching process. The light output power of the LO-LED structure had a 215% enhancement compared with a ST-LED structure that had a high light scattering process occurred on the lateral etched nanoporous and completely etched air gap structures. The photoluminescence wavelength blueshift phenomenon of the LO-LED was caused by partial stress release. By increasing the injection current, the peak wavelength blueshift phenomenon of the LO-LED was smaller than the ST-LED that indicated the compress strain induced piezoelectric field of the InGaN active layer was slightly reduced in the LO-LED The nanoporous and the air gap structures of the GaN:Si layers were fabricated through the EC wet etching process with different reaction times on the InGaN LED structures to enhance the light extraction efficiency and lift off LEDs, that can be applied to the high efficiency nitride-based LED and the reusable substrate technology.
其他識別: U0005-2106201316053000
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.