Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11364
標題: 原子力顯微鏡場致氧化絕緣層覆矽基材與鎳矽化物於矽奈米線成長之研究
Atomic Force Microscopy Field-induced Oxidation on SOI substrates and Formation of Nickel Silicides on Silicon Nanowires
作者: 劉尚武
Liu, Shang-Wu
關鍵字: 鎳矽化物
Nickel-Silicide
奈米線
原子力顯微鏡
反應式磊晶法
Nanowire
Atomic Force Microscopy
Reactive Deposition Epitaxy
出版社: 材料科學與工程學系所
引用: [1-1] Z. Liu, S. Wang, N. Otogawa, Y. Suzuki, M. Osamura, Y. Fukuzawa, T. Ootsuka, Y. Nakayama, H. Tanoue, and Y. Makita, “A thin-film solar cell of high-quality-FeSi/Si heterojunction prepared by sputtering”, Solar Energy Materials and Solar Cells 90, 276 (2006). [1-2] J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, and J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters 88, 013112 (2006). [1-3] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature 430, 61 (2004). [1-4] Z. Liu, H. Zhang, L. Wang, and D. Yang, "Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil", Nanotechnology 19, 375602 (2008). [1-5] J. Kim and W. A. Anderson, "Spontaneous nickel monosilicide nanowire formation by metal induced growth", Thin Solid Films 483, 60 (2005). [1-6] Y. Song, A. L. Schmitt, and S. Jin, "Ultralong single-crystal Metallic Ni2Si nanowires with low resistivity", Nano Letters 7, 965 (2007). [1-7] H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography", Applied Physics Letters 75, 2328 (1999). [1-8] J. Joo, B. Y. Chow, and J. M. Jacobson, "Nanoscale patterning on insulating substrates by critical energy electron beam lithography", Nano Letters 6, 2021 (2006). [1-9] J. C. Garno, Y. Yang, N. A. Amro, S. Cruchon Dupeyrat, S. Chen, and G. Y. Liu, "Precise positioning of nanoparticles on surfaces using scanning probe lithography", Nano Letters 3, 389 (2003). [2-1] P. Avouris, T. Hertel, and R. Martel, “Atomic force microscope tip-induced local oxidation of silicon : kinetics , mechanism , and nanofabrication”, Applied Physics Letters 71, 285 (1997). [2-2] F. P&ez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Set-vat, P. Gorostiza, and F. Sanz, “Nanometer‐scale oxidation of Si(100) surfaces by tapping mode AFM”, Journal of Applied Physics 78,6797 (1995). [2-3] Montserrat Calleja and Ricardo Garcia, “Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy : Size dependence on voltage and pulse duration”, Applied Physics Letters 76, 3427 (2000). [2-4] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air” Applied Physics Letters 56, 2001 (1990). [2-5] T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, “Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope: Doping dependence and kinetics”, Applied Physics Letters 67, 3144 (1995). [2-6] A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, “Mechanisms of surface anodization produced by scanning probe microscopes”, Journal of Vacuum Science & Technology B 13, 2805 (1995). [2-7] D. Stievenard, P. a. Fontaine, and E. Dubois, “Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation”, Applied Physics Letters 70, 3272 (1997). [2-8] J. a. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, “Understanding scanned probe oxidation of silicon”, Applied Physics Letters 73, 271 (1998). [2-9] J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, H. Yokoyama, and I. Introduction, “Role of space charge in scanned probe oxidation” Journal of Applied Physics 84, 6891 (1998). [2-10] K. Birkelund and J. A. Dagata, “Voltage modulation scanned probe oxidation”, Applied Physics Letters 75, 199 (1999). [2-11] R. Garcı, “Patterning of silicon surfaces with noncontact atomic force microscopy : Field-induced formation of nanometer-size water bridges”, Journal of Applied Physics 86, 1898 (1999). [2-12] M. Tello and R. Garcı́a, “Nano-oxidation of silicon surfaces: Comparison of noncontact and contact atomic-force microscopy methods”, Applied Physics Letters 79, 424 (2001). [2-13] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution”, Journal of Physics: Conference Series 052021, 8 (2008). [2-14] J. Mart and R. Garcia, “Silicon nanowire circuits fabricated by AFM oxidation nanolithography”, Nanotechnology 21, 245301 (2010). [2-15] K. E. Bean,”Anisotropic etching of silicon”, Electron Devices, IEEE Transactions 25, 1185 (1978). [2-16] J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows Preferential etching of p-n junction”, Journal of The Electrochemical Society 116, 1325 (1969). [2-17] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions”, Journal of The Electrochemical Society 137, 3612 (1990). [2-18] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi nanowires”, Applied Physics Letters 86, 243103 (2005). [2-19] S. Zhou, X. Liu, Y. Lin, and D. Wang, “Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets”, Angewandte Chemie 47, 7681 (2008). [2-20] J. Du, Z. Ren, K. Tao, A. Hu, P. Hao, Y. Huang, G. Zhao, W. Weng, G. Han, and P. Du, "Self-Induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition", Crystal Growth & Design 8, 3543 (2008). [2-21] Y. C. Chou, W. W. Wu, S. L. Cheng, B. Y. Yoo, N. Myung, L. J. Chen, and K. N. Tu, "In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si", Nano Letters 8, 2194 (2008). [2-22] K. Okubo, Y. Tsuchiya, O. Nakatsuka, A. Sakai, S. Zaima, and Y. Yasuda, “Influence of structural variation of Ni silicide thin films on electrical property for contact materials”, Japanese Journal of Applied Physics 43, 1896 (2004). [2-23] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics 44, 2945 (2005). [2-24] S. Y. Chen and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy”, Thin Solid Films 508, 222 (2006). [2-25] S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Applied Physics Letters 87, 253111 (2005). [2-26] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature 430, 61 (2004). [2-27] Y. C. Lin, K. C. Lu, W. W. Wu, J. Bai, L. J. Chen, K. N. Tu, and Y. Huang, “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices”, Nano letters 8, 913, (2008). [4-1] P. Avouris, T. Hertel, and R. Martel, “Atomic force microscope tip-induced local oxidation of silicon : kinetics , mechanism , and nanofabrication”, Applied Physics Letters 71, 285 (1997). [4-2] J. a. Dagata, F. Perez-Murano, C. Martin, H. Kuramochi, and H. Yokoyama, “Current, charge, and capacitance during scanning probe oxidation of silicon. I. Maximum charge density and lateral diffusion”, Journal of Applied Physics 96, 2386 (2004). [4-3] H. Kuramochi, “Faradaic current detection during anodic oxidation of the H-passivated p-Si ( 001 ) surface with controlled relative humidity”, Nanotechnology 15, 297 (2004). [4-4] J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, H. Yokoyama, and I. Introduction, “Role of space charge in scanned probe oxidation”, Journal of Applied Physics 84, 6891 (1998). [4-5] K. Birkelund and J. A. Dagata, “Voltage modulation scanned probe oxidation”, Applied Physics Letters 75, 199 (1999). [4-6] T. Young, E. Di, D. Ricci, and S. Cincotti, “Patterning surface oxide nanostructures using atomic force microscope local anodic oxidation”, Physica E 40, 1941 (2008). [4-7] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “SPM local oxidation nanolithography with active control of cantilever dynamics” Journal of Physics: Conference Series 61, 1066 (2007). [4-8] T. H. Chen, H. F. Hsu, H. Y. Wu, “Formation of Ni-silicide nanowires on silicon-on-insulator substrates by atomic force microscope lithography and solid phase reaction”, ECS Journal of Solid State Science and Technology 1, 90 (2012). [4-9] 許家豪, “以原子力顯微鏡及反應式磊晶成長法於絕緣層覆矽基材上製備鎳矽化物奈米線”, 國立中興大學碩士論文 (2012). [4-10] K. Okubo, Y. Tsuchiya, O. Nakatsuka, A. Sakai, S. Zaima, and Y. Yasuda, “Influence of Structural Variation of Ni Silicide Thin Films on Electrical Property for Contact Materials”, Japanese Journal of Applied Physics 43, 1896 (2004). [4-11] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics 44, 2945 (2005). [4-12] A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, and R. Pretorius, “Concentration-controlled phase selection of silicide formation during reactive deposition”, Applied Physics Letters 74, 3137 (1999). [4-13] S. Y. Chen and L. J. Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Applied Physics Letters 87, 253111 (2005). [4-14] Y.-C. Lin, Y. Chen, D. Xu, and Y. Huang, “Growth of nickel silicides in Si and Si/SiOx core/shell nanowires”, Nano letters 10, 4721 (2010). [4-15] N. S. Dellas, B. Z. Liu, S. M. Eichfeld, C. M. Eichfeld, T. S. Mayer, and S. E. Mohney, “Orientation dependence of nickel silicide formation in contacts to silicon nanowires”, Journal of Applied Physics 105, 094309 (2009). [4-16] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature 430, 61 (2004). [4-17] W. W. Wu, K. C. Lu, C. W. Wang, H. Y. Hsieh, S. Y. Chen, Y. C. Chou, S. Y. Yu, L. J. Chen, and K. N. Tu, “Growth of multiple metal/semiconductor nanoheterostructures through point and line contact reactions”, Nano letters 10, 3984 (2010).
摘要:   由於電子元件尺寸縮小至今已近物理極限,因一維奈米線有特殊的光電特性,以其為組成單位之奈米電子元件為新世代電子元件的發展重點之一。金屬矽化物在奈米尺度下保有優良的電性,且與矽基材有良好的接面特性,而鎳矽化物的矽消耗量低以及熱穩定性,應用於奈米電子元件具有高度的潛力。掃描探針微影術能在大氣環境下操作,以簡單的製程就能達到奈米尺度微影的目的。利用反應式磊晶法在基材上沉積金屬,控制反應時金屬原子濃度,容易形成與基材有良好的磊晶關係的金屬矽化物,期望可應用於多段式的鎳矽化物/矽異質結構奈米線的成長。   因此本實驗探討輕敲式原子力顯微鏡搭配脈衝式的電壓供應,在SOI基材上製備氧化線;再以適當濕式蝕刻製作線寬較細的矽奈米線。接著利用反應式磊晶法蒸鍍少量的金屬,探討溫度及蒸鍍速率對鎳矽化物的結構及生成相。   研究結果顯示,利用輕敲式AFM進行場致氧化形成氧化顯示,氧化行為在1 ms內發生,氧化高度及寬度與寬度與氧化時間成正比,氧化速率約為 1.5 nm/ms,當氧化時間大於1 ms後,氧化電流開始下降,氧化物的尺寸不再增加。而以固定電壓開啟時間(ton)為1 ms,調整電壓關閉時間(toff),以施加不同電壓頻率的方式[ f = (ton+toff)-1]製備氧化線,能形成高高寬比的氧化線,氧化線經由濕式蝕刻所製作的矽奈米線,其最小線寬可達35 nm。以反應式磊晶法以鎳矽原子比為1/6,在富矽的條件下於矽奈米線上蒸鍍鎳金屬,改變蒸鍍速率0.001~ 0.1 A/s。不論是在300或是350 ℃下皆由與矽基材有較好的晶格匹配性的磊晶NiSi2生成,使矽奈米線保有完整性;而矽奈米線經由蝕刻過後形成的(111)面較粗糙,使得矽奈米線的(111)面上有較多的鎳矽化物生成;而由於低溫的擴散速率較低及蒸鍍速率較快時鎳原子濃度較高,鎳矽化物的成核密度較高。而當Ni/Si原子比增加時,就能夠形成多段式的NiSi2/Si異質結構奈米線。
Recently, the size of electronic devices approaches to limitations of Moore''s law. One dimension nanostructures, such as nanotubes and nanowires, are attractive building blocks for nanoelectronics due to their unique photoelectric properties. Metal silicides have excellent electric properties in nanoscale, and they have very low barrier height on the valence band of silicon. Moreover, nickel silicides are promising materials for applying in the nanoelectronic devices because of their low Si consumption and thermal stability. Scanning probe lithography can operate in air and fabricate nanostructure simply. Using reactive deposition epitaxy (RDE) can promote the epitaxial growth of metal silicide on silicon. We expect that it can be used in the formation of multiple Ni-silicide/Si heterostructures. In this study, Si oxide nanowires were fabricated on SOI substrates by AFM field induced nanooxidation in a tapping mode with pulse modulation method. Further, the thin Si nanowires were fabricated by a selective wet etching. Furthermore, the effects of reaction temperature and deposition rate on the formation of silicide were studied. The results show that the height and width of oxide dots were proportional to the oxidation time, and the oxidation rate was about 1.5 nm/ms. When the oxidation time was longer than 1 ms, the size of oxide dots did not increase. Controlling the oxidation time as 1 ms and modulating the turn off time can be used to fabricate high-aspect-ratio oxide nanowires. Si nanowires with 35 nm in diameter were formed after selective wet etching process. Epitaxial NiSi2 was formed on the Si nanowires at 300 and 350 ℃ because NiSi2 has a small lattice mismatch with Si. In addition, NiSi2 preferred to form on the (111) surface because (111) surface was more rough than (100) surface. Decreasing the deposition temperature and increasing the deposition rate caused the increase of the nucleation density of NiSi2. Multiple nanostructure of NiSi2/Si was formed when more Ni atoms deposited.
URI: http://hdl.handle.net/11455/11364
其他識別: U0005-2208201211362600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201211362600
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.