Please use this identifier to cite or link to this item:
標題: 可撓式氧化鋅奈米發電機之製作與呼吸致電特性研究
Fabrication and Characterization of a Flexible ZnO Nanogenerator for Harvesting Energy from Respiration
作者: 林宏易
Lin, Hung-I
關鍵字: 氧化鋅
Zinc oxide
出版社: 材料科學與工程學系所
引用: [1] Special Issue on Sustainability and Energy, Science, vol. 315, pp. 721-896, 2007. [2] Energy Quest, Chapter 17: Renewable Energy vs. Fossil Fuels [3] W. E. Glassley, Geothermal Energy: Renewable Energy and the Environment, CRC, Boca Raton, 2010. [4] M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust, “Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production,” Science, vol. 315, pp. 804 – 807, 2007. [5] N. S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science, vol. 315, pp. 798-801, 2007. [6] A. J. Bard and M. A. Fox, “Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen,” Accounts of Chemical Research, vol. 28, pp. 141 – 145, 1995. [7] R. P. Feynman, “There''s Plenty of Room at the Bottom,” Engineering and Science, vol. 23(5), pp. 22-36, 1960. [8] N. Taniguchi, “On the Basic Concept of ‘Nano-Technology,’” in International Conference of Product Engineers, Tokyo, Japan: Japan Society of Precision Engineering, 1974. [9] G. Huajian and Y. Haimin, “Shape insensitive optimal adhesion of nanoscale fibrillar structures,” Proceedings of the National Academy of Sciences, vol. 101, pp. 7851-7856, 2004. [10] F. Mauro, “Cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol. 5, pp. 161-171, 2005. [11] M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, pp. 2013-2016, 1998. [12] S. Kim , B. Fisher , H. J. Eisler , and M. Bawendi, “Type-II Quantum Dots:  CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures,” Journal of the American Chemical Society, vol. 125 (38), pp. 11466–11467, 2003. [13] University of Edinburgh School of Physics: Colloidal metals & conjugates. [14] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp. 1289-1292, 2001. [15] Y. F. Hu, Y. Zhang , C. Xu , L. Lin , R. L. Snyder, and Z. L. Wang “Self-Powered System with Wireless Data Transmission, ” Nano Letters, vol. 11, pp. 2572-2577, 2011. [16] M. B. Lee, J. Bae, J. Lee, C. S. Lee, S. Hong, and Z. L. Wang, “Self-powered environmental sensor system driven by nanogenerators,” Energy & Environmental Science, vol. 4, pp. 3359-3363, 2011. [17] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Letters, vol. 7, pp 1003–1009, 2007. [18] J. C. Wang, W. T. Weng, M. Y. Tsai, M. K. Lee, S. F. Horng, T. P. Perng, C. C. Kei, C. C. Yu, and H. F. Meng, “Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer,” Journal of Materials Chemistry, vol. 20, pp. 862–866, 2010. [19] T. Shibata, K. Unno, E. Makino, Y. Ito, and S. Shimada, “Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe,” Sensors and Actuators A: Physical, vol. 102, pp. 106–113, 2002. [20] W. T. Chang, Y. C. Chen, R. C. Lin, C. C. Cheng, K. S. Kao, and Y. C. Huang, “Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates,” Current Applied Physics, vol. 11, pp. 333-338, 2011. [21] C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, and R. H. Horng, “Effects of Growth Conditions on Structural Properties of ZnO Nanostructures on Sapphire Substrate by Metal–Organic Chemical Vapor Deposition,” Nanoscale Research Letters, vol. 4, pp. 377–384, 2009. [22] C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, and R. H. Horng, “Three-Step Growth of Well-Aligned ZnO Nanotube Arrays by Self-Catalyzed Metalorganic Chemical Vapor Deposition Method,” Crystal Growth & Design, vol. 9, pp. 4555-4561, 2009. [23] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nature Materials, vol. 2, pp. 821-826, 2003. [24] C. T. Pan, Z. H Liu, and Y. C. Chen, “Study of broad bandwidth vibrational energy harvesting system with optimum thickness of PET substrate,” Current Applied Physics, vol. 12, pp. 684-696, 2012. [25] A. Manekkathodi, M. Y. Lu, C. W. Wang, and L. J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Advanced Materials, vol. 22, pp. 4059-4063, 2010. [26] Y. Qiu, H. Zhang, L. Hu, D. Yang, L. Wang, B. Wang, J. Ji, G. Liu, X. Liu, J. Lin, F. Li, and S. Han, “Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates,” Nanoscale, vol. 4, pp. 6568-6573, 2012. [27] B. Roszek, W. H. de Jong, and R. E. Geertsma, “Nanotechnology in Medical Applications: State-of-the-art in Materials and Devices,” RIVM, 2005. [28] A. R. Hutson, “Piezoelectricity and conductivity of ZnO and CdS,” Physical Review Letters, vol. 4, pp. 505-507, 1960. [29] Z. L. Wang, “Nanostructures of zinc oxide,” Materials Today, vol. 7, pp. 26-33, 2004. [30] J. L. G. Fierro, “Metal Oxides: Chemistry & Applications,” CRC Press, pp. 182, 2006. [31] T. S. Herng, A. Kumar, C. S. Ong, Y. P. Feng, Y. H. Lu, K. Y. Zeng, and J. Ding, “Investigation of the non-volatile resistance change in noncentrosymmetric compounds,” Scientific Reports, vol. 2, no.587, 2012. [32] Z. L. Wang and J. H. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, vol. 312, pp. 242-246, 2006. [33] Z. L. Wang, “Self-Powered Nanotech,” Scientific American, vol. 298, pp. 82-87, 2008. [34] J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D. Kuo, “Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort,” Science, vol. 319, pp. 807-810, 2008. [35] X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, vol. 316, pp. 102-105, 2007. [36] C. Xu, X. D. Wang, and Z. L. Wang, “Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies,” Journal of the American Chemical Society, vol. 131, pp. 5866-5872, 2009. [37] R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, “Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator,” Nano Letters, vol. 9, pp. 1201-1205, 2009. [38] D. Shen, J. H. Parka, J. H. Noh, S. Y. Choe, S. H. Kim, H. C. Wikle III, and D. J. Kim, “Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting,” Sensors and Actuators, A, vol. 154, pp. 103-108, 2009. [39] R. Myers, M. Vickers, H. Kim, and S. Priya, “Small scale windmill,” Applied Physics Letters, vol. 90, 054106, 2007. [40] J. Ji, F. Kong, L. He, Q. Guan, and Z. Feng, “Piezoelectric Wind-Energy-Harvesting Device with Reed and Resonant Cavity,” Japanese Journal of Applied Physics, vol. 49, 050204, 2010. [41] J. K. Gupta, C. H. Lin, and Q. Chen, “Characterizing Exhaled Airflow from Breathing and Talking,” Indoor Air, vol. 20, pp. 31-39, 2010. [42] K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. L. Kang, Z. L. Wang, and K. J. Lee, “Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates,” Nano Letters, vol. 10, pp. 4939–4943, 2010. [43] K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang , and K. J. Lee, “Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons,” Advanced Materials, vol. 24, pp. 2999-3004, 2012. [44] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Piezoelectric nanogenerator using CdS nanowires,” Applied Physics Letters, vol. 92, 022105, 2008. [45] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the Output of a CdS Nanowire Nanogenerator by a White-Light-Stimulated Optoelectronic Effect,” Advanced Materials, vol. 20, pp. 3127-3130, 2008. [46] S. Xu, B. J. Hansen, and Z. L. Wang, “Piezoelectric-Nanowire Enabled Power Source for Driving Wireless Microelectronics,” Nature Communication, vol. 1, pp. 93–97, 2010, [47] Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, “Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion,” Nano Letters, vol. 10, pp. 524–528, 2010. [48] S. N. Cha, S. M. Kim, H. J. Kim, J. Y. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, B. L. Choi, J. J. Park, Z. L. Wang, J. M. Kim, and K. Kim, “Porous PVDF As Effective Sonic Wave Driven Nanogenerators,” Nano Letters, vol. 11, pp. 5142–5147, 2011. [49] M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L. J. Chou, and Z. L. Wang, “A Hybrid Piezoelectric Structure for Wearable Nanogenerators,” Advanced Materials, vol. 24, pp. 1759-1764, 2012. [50] J. M. Wu, C. Xu, Y. Zhang, and Z. L. Wang, “Lead-Free Nanogenerator Made from Single ZnSnO3 Microbelt,” ACS Nano, vol. 6, pp. 4335–4340, 2012. [51] J. M. Wu, C. Xu, Y. Zhang, Ya Yang, Y. Zhou, and Z. L. Wang, “Flexible and Transparent Nanogenerators Based on a Composite of Lead-Free ZnSnO3 Triangular-Belts,” Advanced Materials, vol. 24, pp. 6094-6099, 2012. [52] P. Harrop and R. Das, “Wireless Sensor Networks 2011 – 2021,” IDTechEX, 2011. [53] M. Catrysse, R. Puers, C. Hertleer, L. V. Langenhove, H. v. Egmond, and D. Matthys, “Towards the integration of textile sensors in a wireless monitoring suit,” Sensors and Actuators A: Physical, vol. 114, pp. 302–311, 2004. [54] H. X. Zhang, M. Fallahi, S. Pau, R. A. Norwood, N. Peyghambarian, “Solar powered wireless sensor systems for border security,” Sensors, and Command, Control, Communications, and Intelligence (C3i) Technologies for Homeland Security and Homeland Defense IX, vol. 7666, 2010. [55] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon, “Health monitoring of civil infrastructures using wireless sensor networks,” Proceedings of the Sixth International Symposium on Information Processing in Sensor Networks, pp. 254 –263, 2007. [56] Z. L. Wang, “Progress in Piezotronics and Piezo-Phototronics,” Advanced Materials, vol. 24, pp. 4632 – 4646, 2012. [57] Z. L. Wang and W. Wu, “Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems,” Angewandte Chemie International Edition, vol. 51, pp. 11700-11721, 2012. [58] S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. S. Yang, Z. L. Wang, “Self-powered nanowire devices,” Nature Nanotechnology, vol. 5, pp. 366 – 373, 2010. [59] J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, and Z. L. Wang, “ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices,” Nanotechnology, vol. 21, 405203, 2010. [60] Y. Wei, C. Xu, S. Xu, C. Li, W. Wu, and Z. L. Wang, “Planar Waveguide-Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells,” Nano Letters, vol. 10, pp. 2092–2096, 2010. [61] M. Lee, R. Yang, C. Li, and Z. L. Wang, “Nanowire−Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies,” The Journal of Physical Chemistry Letters, vol. 1, pp. 2929 – 2935, 2010. [62] Y. Shen, Y. Liu, G. Zhu, H. Fang, Y. Huang, X. Jiang, and Z. L. Wang, “Patterned polymer nanowire arrays as an effective protein immobilizer for biosensing and HIV detection,” Nanoscale, vol. 5, pp. 527–531, 2013. [63] Z. Li, G. Zhu, R. Yang, A. C. Wang, and Z. L. Wang, “Muscle-Driven In Vivo Nanogenerator,” Advanced Materials, vol. 22, pp. 2534-2537, 2010. [64] J. Zhong, Q. Zhong, F. Fan, Y. Zhang, S. Wang, B. Hua, Z. L. Wang, and J. Zhou, “Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs,” Nano Energy, In Press, 2012. [65] P. Bai, G. Zhu, Z. H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma, and Z. L. Wang, “Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions,” ACS Nano, vol. 7, pp. 3713–3719, 2013. [66] Y. F. Hu, C. Xu, Y. Zhang, L. Lin, R. L. Snyder, and Z. L. Wang, “A Nanogenerator for Energy Harvesting from a Rotating Tire and its Application as a Self-Powered Pressure/Speed Sensor,” Advanced Materials, vol. 23, pp. 4068-4071, 2011. [67] C. Sun, J. Shi, D. J. Bayerl, and X. D. Wang, “PVDF microbelts for harvesting energy from respiration,” Energy & Environmental Science, vol. 4, pp. 4508-4512, 2011. [68] S. Lee, S. H. Bae, L. Lin, Y. Yang, C. Park, S. W. Kim, S. N. Cha, H. Kim, Y. J. Park, and Z. L. Wang, “Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor,” Advanced Functional Materials, vol. 23, pp. 2445-2449, 2012. [69] S. Wang, L. Lin, and Z. L. Wang, “Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics,” Nano Letters, vol. 12, pp. 6339-6346, 2012. [70] M. H. Zhao, Z. L. Wang, and S. X. Mao, “Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope,” Nano Letters, vol. 4, pp.587-590, 2004 [71] H. J. Xiang, Jinlong Yang, J. G. Hou, and Qingshi Zhu, “Piezoelectricity in ZnO nanowires: A first-principles study,” Applied Physics Letters, vol. 89, 223111, 2006. [72] K. W. Chung, Z. Wang, J. C. Costa, F. Williamsion, P. P. Ruden, and M. I. Nathan, “Barrier height change in GaAs Schottky diodes induced by piezoelectric effect,” Applied Physics Letters, vol. 59, 1191, 1991. [73] M. Andres-Verges, A. Mifsud and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” Journal of the Chemical Society, Faraday Transactions, vol. 86, pp. 959-963, 1990. [74] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352, 2001. [75] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO-nanostructures, defects, and devices,” Materials Today, vol. 10, pp. 40-48, 2007. [76] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” Journal of Materials Chemistry, vol. 14, pp. 2575-2591, 2004. [77] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine,” Journal of Sol-Gel Science and Technology, vol. 39, pp. 49-56, 2006. [78] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Advanced Materials, vol. 15, pp. 464-466, 2003. [79]Y. Sun, D. J. Riley, and M. N. R. Ashfold, “Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates,” The Journal of Physical Chemistry B, vol. 110, pp. 15186-15192, 2006. [80] U. Pal and P. Santiago, “Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process,” The Journal of Physical Chemistry B, vol. 109, pp. 15317-15321, 2005. [81] J. E. Hall, in Guyton and Hall Textbook of Medical Physiology, Saunders, 12th ed, 2010. [82] K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “ Flexible Polymer-Embedded Si Wire Arrays,” Advanced Materials, vol. 21, pp. 325-328, 2009. [83] M. K. Kim, D. K. Yi, and U. Paik, “Tunable, Flexible Antireflection Layer of ZnO Nanowires Embedded in PDMS,” Langmuir, vol. 26, pp. 7552–7554, 2010. [84] S. Chu, D. Li, P. C. Chang, and J. G Lu, “Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays,” Nanoscale Research Letters, vol. 6:38, 2011. [85] S. Zhang, Y. Shen, H. Fang, S. Xu, J. Song, and Z. L. Wang, “Growth and replication of ordered ZnO nanowire arrays on general flexible substrates,” Journal of Materials Chemistry, vol. 20, pp. 10606-10610, 2010. [86] MicroChem, PMGI Resist datasheet. [87] I. G. Foulds, R. W. Johnstone, S. H. Tsang, M. Hamidi and M. Parameswaran, “Polydimethylglutarimide (PMGI) as a structural material for surface micromachining,” Journal of Micromechanics and Microengineering, vol. 18, 045026, 2008. [88] H. Takano, H. Nakano, H. Minami, K. Hosogi, N. Yoshida, K. Sato, Y. Hirose, N. Tsubouchi, “Electron‐beam/ultraviolet hybrid exposure combined with novel bilayer resist system for a 0.15 μm T‐shaped gate fabrication process,” Journal of Vacuum Science & Technology B, vol. 14, pp. 3483–3488, 1996. [89] B. Cui and T. Veres, “High resolution electron beam lithography of PMGI using solvent developers,” Microelectronic Engineering, vol. 85, pp. 810-813, 2008. [90] M. C. Belanger and Y. Marois, “Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review,” Journal of Biomedical Materials Research, vol. 58, pp. 467-477, 2001. [91] A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, "The Autofluorescence of plastic materials and chips under laser irradiation," Lab on a Chip, vol. 5, pp.1348-1354, 2005. [92] L. L. Gang and P. L. Luke, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Applied Physics Letters, vol. 87, 074101, 2005. [93] T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectronic Engineering, vol. 61, pp. 907-914, 2001. [94] Tokuyama, Positive-Type Photoresist Developer. [95] Materials at Colorado School of Mines, RCA Clean. [96] Instituto de Ciencia de Materiales de Madrid, Electron Beam Heating Evaporation. [97] Y. W. Beag, K. Egawa, and R. Shimizu, “A compact electrongun evaporation source for highly stable evaporation of refractory metals,” Review of Scientific Instruments, vol. 64, 3647, 1993. [98] B.S. Flavel, J.G. Shapter, and J.S. Quinton, “Nanosphere Lithography Using Thermal Evaporation of Gold,” ICONN, 2006 [99] Instituto de Ciencia de Materiales de Madrid, Thermal evaporation in vacuum. [100] New Mexico Tech, FESEM Principle. [101] Organization of Scienceiscool, Introduction to Structures and Solids. [102] J. B. Cui and M. A. Thomas, “Power dependent photoluminescence of ZnO,” Journal of Applied Physics, vol. 106, 033518, 2009. [103] The Institute for Solar Energy Research in Hameln, Photovoltaics. [104] Respironics, PLV-100 Clinical Manual. [105] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, “Functional Electrical Stimulation by Nanogenerator with 58 V Output Voltage,” Nano Letters , vol. 12, pp. 3086-3090, 2012. [106] C. Periasamy and P. Chakrabarti, “Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator,” Journal of Applied Physics, vol. 109, 054306, 2011. [107] B. Kumar and S. W. Kim, “Recent advances in power generation through piezoelectric nanogenerators,” Journal of Materials Chemistry, vol. 21, pp. 18946-18958, 2011. [108] M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim,“ Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods,” Advanced Materials, vol. 21, pp. 2185–2189, 2009. [109] Z. Y. Gao, J. Zhou, Y. D. Gu, P. Fei, Y. Hao, G. Bao and Z. L. Wang, “Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor,” Journal of Applied Physics, vol. 105, 113707, 2009. [110] S. Lee, J. I. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, and Z. L. Wang, “Toward Robust Nanogenerator Using Aluminum Substrate,” Advanced Materials, vol. 24, pp. 4398-4402, 2012.
摘要: 藉由呼吸的微小能量即可驅動奈米發電機達到取代電池行自行發電目的,是具有前瞻性的科技。氧化鋅具有獨特的壓電特性的半導體材料,近幾年來已被廣泛的探討。本文研究新穎性的氧化鋅奈米發電機具有撓曲性及高度輕量化基板可用於呼吸發電,使用剝離基板技術可將氧化鋅奈米線從矽基板轉移到透明可撓曲的環氧樹酯基板。在呼吸過程中,具有壓電特性的氧化鋅奈米發電機會產生交流電荷。正常人類呼吸的流速大約小於 2.0 ms-1及潮氣容積 500 mL,在此條件下,氧化鋅奈米發電機可產生電流密度3.65 nA 及電壓 27.32 mV。而在呼吸的流速5.0 ms-1及潮氣容積 1000 mL的條件下,氧化鋅奈米發電機可產生電流密度11.21 nA 及電壓 67.25 mV。 為了達到更高的發電能量,本研究引進了疊層法及使用聚二甲基矽氧烷的材料做為可撓曲基板。兩層的氧化鋅奈米發電機約25 μm厚,而16層的大小約200 μm。6層的氧化鋅奈米發電機發電量0.5 μA cm-2 及電壓 0.6 V,而在在呼吸的流速5.0 ms-1的條件下可產生0.8 μA 及1.3 V。因此剝離法及疊層法是很具有前瞻的製程方法來製備可被呼吸擺動的奈米發電機。
Replacing batteries by harvesting energy from human respiration is a promising technology for self-powered systems using the concept of nanogenerators (NGs). ZnO is a semiconductor material with unique piezoelectric property has been discussed recently. A novel ZnO nanogenerator with a flexible and highly lightweight substrate has the potential of harvesting energy from human respiration. We introduce a lifting-off method of ZnO nanowires from Si substrate and embedded in flexible films-epoxy resin has been proposed. Flexible films served as the secondary and flexible substrate after ZnO nanowires transferring from the Si substrate. The piezoelectric potential of a ZnO nanogenerator can produce AC power output during respiration. For normal human respiration at an air flow rate of 2.0 ms-1 and tidal volume 500 mL, the ZnO nanogenerator generates current-density and voltages of 3.65 nA and 27.32 mV, respectively. The electrical performance reached the highest value of 11.21 nA and 67.25 mV at an air flow rate of 5.0 ms-1 and tidal volume 1000 mL. To obtain the high-output piezoelectric performance, fold-up fabrication method is introduced and polydimethylsiloxane (PDMS) is used as the flexible film. The thickness of the 2-fold ZnO NG was approximately 25 μm, and the 16-fold ZnO NG had a comparatively low size of approximately 200 μm. The 16-fold ZnO NG generates approximately 0.6 V and 0.5 μA at the air flow rate of 2.0 ms-1, while generating approximately 1.3 V and 0.8 μA at the air flow rate of 5.0 ms-1. The lift-off and fold-up methods are both candidates for creating devices that can harvest energy from human respiration.
其他識別: U0005-0506201313461400
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.